A pseudo arc-length method for strong discontinuity of detonation wave and its man manufactured solution verification
-
摘要: 针对该问题开展了伪弧长数值算法研究,通过引入弧长参数,使网格按照一定的形式自适应移动,达到在强间断区域自动加密的效果,从而提高网格分辨率。基于伪弧长算法编写了二维程序,并对程序进行人为解方法验证。将伪弧长算法和直接有限体积法的数值结果进行对比,通过误差分析,显示出伪弧长算法能有效提高计算精度。最后将伪弧长算法应用于气相爆轰波在二维管道中的传播问题,研究了波阵面的捕捉效果和爆轰波胞格结构的形成过程。Abstract: In this paper we studied a pseudo arc-length method for high-precision and high-resolution calculation, a problem that has been a great challenge for numerical simulation of strong discontinuity for explosion shock wave. By the introduction of the arc-length parameters, the mesh will move adaptively and gather automatically in the strong discontinuity singular areas, which will help to improve the grid resolution. We wrote 2D programs based on theoretical work, and conducted the program verification using the man maufactured solution. Through error analysis and numerical results, it was demonstrated that this method was more efficient in improving the calculation accuracy than the finite volume method. Finally we applied the pseudo arc-length method to 2D gas detonation wave propagation problems and studied the capture effect in the wave front and the formation of detonation cellular structure.
-
表 1 有限体积法与伪弧长算法在不同网格数时的误差和精度
Table 1. Numerical errors and precision of FVM and PALM changing with grid numbers
网格数 ε O 有限体积法 伪弧长算法 有限体积法 伪弧长算法 40×40 0.138 338 0.219 237 80×80 0.055 447 0.073 144 1.319 0 1.583 7 160×160 0.015 964 0.019 735 1.796 3 1.889 9 320×320 0.004 708 0.004 961 1.761 6 1.992 0 -
[1] LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115(1):200-212. doi: 10.1006/jcph.1994.1187 [2] 张德良, 谢巍, 郭长铭, 等.气相爆轰胞格结构和马赫反射数值模拟[J].爆炸与冲击, 2001, 21(3):161-167. http://www.bzycj.cn/CN/abstract/abstract10215.shtmlZHANG Deliang, XIE Wei, GUO Changming, et al. Numerical simulation of cellar structures and machreflection of gaseous detonation waves[J]. Explosion and Shock Waves, 2001, 21(3):161-167. http://www.bzycj.cn/CN/abstract/abstract10215.shtml [3] 王成, SHU C-W.爆炸力学高精度数值模拟研究进展[J].科学通报, 2015(10):882-898. http://csb.scichina.com:8080/CN/abstract/abstract517155.shtmlWANG Cheng, SHU C-W. Progress in high-resolution numerical simulation of explosion mechanics[J]. Chinese Science Bulletin, 2015(10):882-898. http://csb.scichina.com:8080/CN/abstract/abstract517155.shtml [4] 王昌建, 徐胜利.直管内胞格爆轰的基元反应数值研究[J].爆炸与冲击, 2005, 25(5):405-416. doi: 10.11883/1001-1455(2005)05-0405-12WANG Changjian, XU Shengli. Numerical study on cellular detonation in a straight tube based on detailed chemical reaction model[J]. Explosion and Shock Waves, 2005, 25(5):405-416. doi: 10.11883/1001-1455(2005)05-0405-12 [5] 王星, 马天宝, 宁建国.双曲偏微分方程的局部伪弧长方法研究[J].计算力学学报, 2014(3):384-389. doi: 10.7511/jslx201403017WANG Xing, MA Tianbao, NING Jianguo. Local pseudo arc-length method for hyperbolic partial differential equation[J]. Chinese Journal of Computational Mechanics, 2014(3):384-389. doi: 10.7511/jslx201403017 [6] 王瑞利, 刘全, 刘希强, 等.人为解方法及其在流体力学程序验证中的应用[J].计算机应用与软件, 2012(11):4-7. http://www.cnki.com.cn/Article/CJFDTotal-JYRJ201211004.htmWANG Ruili, LIU Quan, LIU Xiqiang, et al. Artificial solution and its application in verifying hydrodynamics program[J]. Computer Applications and Software, 2012(11):4-7. http://www.cnki.com.cn/Article/CJFDTotal-JYRJ201211004.htm [7] ROACHE P J. Verification and validation in computational science and engineering[M]. Albuquerque, NM, USA: Hermosa Publishers, 1998:8-9. [8] OBERKAMPF W L, TRUCANO T G. Verification and validation benchmarks[J]. Nuclear Engineering and Design, 2008, 238(3):716-743. doi: 10.1016/j.nucengdes.2007.02.032 [9] ROY C J. Review of code and solution verification procedures for computational simulation[J]. Journal of Computational Physics, 2005, 205(1):131-156. doi: 10.1016/j.jcp.2004.10.036 [10] 邓小刚, 宗文刚, 张来平, 等.计算流体力学中的验证与确认[J].力学进展, 2007, 37(2):279-288. doi: 10.6052/1000-0992-2007-2-J2005-149DENG Xiaogang, ZONG Wengang, ZHANG Laiping, et al. Verification and validation in computational fluid dynamics[J]. Advances in Mechanics, 2007, 37(2):279-288. doi: 10.6052/1000-0992-2007-2-J2005-149 [11] 王瑞利, 林忠, 袁国兴.科学计算程序的验证和确认[J].北京理工大学学报, 2010, 30(3):353-356. http://www.cqvip.com/qk/87888X/200801/29828066.htmlWANG Ruili, LIN Zhong, YUAN Guoxing. Verification and validation in scientific computing code[J]. Transactions of Beijing Institute of Technology, 2010, 30(3):353-356. http://www.cqvip.com/qk/87888X/200801/29828066.html [12] NING J G, YUAN X P, MA T B, et al. Positivity-preserving moving mesh scheme for two-step reaction model in two dimensions[J]. Computers and Fluids, 2015, 123:72-86. doi: 10.1016/j.compfluid.2015.09.011 [13] HAN J Q, TANG H Z. An adaptive moving mesh method for two-dimensional ideal magnetohydrodynamics[J]. Journal of Computational Physics, 2007, 220(2):791-812. doi: 10.1016/j.jcp.2006.05.031 [14] 曾现洋, 刘睿, 刘希强.人为解与人为解方法[J].聊城大学学报(自然科学版), 2010, 23(1):71-75. http://d.wanfangdata.com.cn/Periodical_lcsyxb-zrkxb201001022.aspxZENG Xianyang, LIU Rui, LIU Xiqiang. Manufactured solution and the method of manufactured solution[J]. Journal of Liaocheng University (Natural Science Edition), 2010, 23(1):71-75. http://d.wanfangdata.com.cn/Periodical_lcsyxb-zrkxb201001022.aspx [15] NING J G, WANG X, MA T B, et al. Numerical simulation of shock wave interaction with a deformable particle based on the pseudo arc-length method[J]. Science China Technological Sciences, 2015, 58(5):848-857. doi: 10.1007/s11431-015-5800-9 [16] GOLLAN R J, JACOBS P A. About the formulation, verification and validation of the hypersonic flow solver Eilmer[J]. International Journal for Numerical Methods in Fluids, 2013, 73(1):19-57. doi: 10.1002/fld.v73.1 [17] LI J, REN H L, NING J G, et al. Additive Runge-Kutta methods for H2/O2/Ar detonation with a detailed elementary chemical reaction model[J]. Chinese Science Bulletin, 2013, 58(11):1216-1227. doi: 10.1007/s11434-013-5766-6