爆轰波强间断问题的伪弧长算法及其人为解验证

马天宝 陈建良 宁建国 原新鹏

马天宝, 陈建良, 宁建国, 原新鹏. 爆轰波强间断问题的伪弧长算法及其人为解验证[J]. 爆炸与冲击, 2018, 38(2): 271-278. doi: 10.11883/bzycj-2016-0216
引用本文: 马天宝, 陈建良, 宁建国, 原新鹏. 爆轰波强间断问题的伪弧长算法及其人为解验证[J]. 爆炸与冲击, 2018, 38(2): 271-278. doi: 10.11883/bzycj-2016-0216
MA Tianbao, CHEN Jianliang, NING Jianguo, YUAN Xinpeng. A pseudo arc-length method for strong discontinuity of detonation wave and its man manufactured solution verification[J]. Explosion And Shock Waves, 2018, 38(2): 271-278. doi: 10.11883/bzycj-2016-0216
Citation: MA Tianbao, CHEN Jianliang, NING Jianguo, YUAN Xinpeng. A pseudo arc-length method for strong discontinuity of detonation wave and its man manufactured solution verification[J]. Explosion And Shock Waves, 2018, 38(2): 271-278. doi: 10.11883/bzycj-2016-0216

爆轰波强间断问题的伪弧长算法及其人为解验证

doi: 10.11883/bzycj-2016-0216
基金项目: 

国家自然科学基金项目 11532012

国家自然科学基金项目 11390363

详细信息
    作者简介:

    马天宝(1981-), 男, 副教授, 博士生导师, madabal@bit.edu.cn

  • 中图分类号: O381

A pseudo arc-length method for strong discontinuity of detonation wave and its man manufactured solution verification

  • 摘要: 针对该问题开展了伪弧长数值算法研究,通过引入弧长参数,使网格按照一定的形式自适应移动,达到在强间断区域自动加密的效果,从而提高网格分辨率。基于伪弧长算法编写了二维程序,并对程序进行人为解方法验证。将伪弧长算法和直接有限体积法的数值结果进行对比,通过误差分析,显示出伪弧长算法能有效提高计算精度。最后将伪弧长算法应用于气相爆轰波在二维管道中的传播问题,研究了波阵面的捕捉效果和爆轰波胞格结构的形成过程。
  • 图  1  新旧网格转化示意图

    Figure  1.  Diagram of old grid transforming to new grid

    图  2  密度云图(T=0.48)

    Figure  2.  Density contours (T=0.48)

    图  3  数值结果对比图(T=2.0)

    Figure  3.  Comparison of numerical results (T=2.0)

    图  4  波阵面附近网格及压力云图

    Figure  4.  Mesh distribution and pressure contours around wave front

    图  5  稳定气体爆轰波胞格形成过程

    Figure  5.  Formation process of stable gas detonation cell

    表  1  有限体积法与伪弧长算法在不同网格数时的误差和精度

    Table  1.   Numerical errors and precision of FVM and PALM changing with grid numbers

    网格数 ε O
    有限体积法 伪弧长算法 有限体积法 伪弧长算法
    40×40 0.138 338 0.219 237
    80×80 0.055 447 0.073 144 1.319 0 1.583 7
    160×160 0.015 964 0.019 735 1.796 3 1.889 9
    320×320 0.004 708 0.004 961 1.761 6 1.992 0
    下载: 导出CSV
  • [1] LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115(1):200-212. doi: 10.1006/jcph.1994.1187
    [2] 张德良, 谢巍, 郭长铭, 等.气相爆轰胞格结构和马赫反射数值模拟[J].爆炸与冲击, 2001, 21(3):161-167. http://www.bzycj.cn/CN/abstract/abstract10215.shtml

    ZHANG Deliang, XIE Wei, GUO Changming, et al. Numerical simulation of cellar structures and machreflection of gaseous detonation waves[J]. Explosion and Shock Waves, 2001, 21(3):161-167. http://www.bzycj.cn/CN/abstract/abstract10215.shtml
    [3] 王成, SHU C-W.爆炸力学高精度数值模拟研究进展[J].科学通报, 2015(10):882-898. http://csb.scichina.com:8080/CN/abstract/abstract517155.shtml

    WANG Cheng, SHU C-W. Progress in high-resolution numerical simulation of explosion mechanics[J]. Chinese Science Bulletin, 2015(10):882-898. http://csb.scichina.com:8080/CN/abstract/abstract517155.shtml
    [4] 王昌建, 徐胜利.直管内胞格爆轰的基元反应数值研究[J].爆炸与冲击, 2005, 25(5):405-416. doi: 10.11883/1001-1455(2005)05-0405-12

    WANG Changjian, XU Shengli. Numerical study on cellular detonation in a straight tube based on detailed chemical reaction model[J]. Explosion and Shock Waves, 2005, 25(5):405-416. doi: 10.11883/1001-1455(2005)05-0405-12
    [5] 王星, 马天宝, 宁建国.双曲偏微分方程的局部伪弧长方法研究[J].计算力学学报, 2014(3):384-389. doi: 10.7511/jslx201403017

    WANG Xing, MA Tianbao, NING Jianguo. Local pseudo arc-length method for hyperbolic partial differential equation[J]. Chinese Journal of Computational Mechanics, 2014(3):384-389. doi: 10.7511/jslx201403017
    [6] 王瑞利, 刘全, 刘希强, 等.人为解方法及其在流体力学程序验证中的应用[J].计算机应用与软件, 2012(11):4-7. http://www.cnki.com.cn/Article/CJFDTotal-JYRJ201211004.htm

    WANG Ruili, LIU Quan, LIU Xiqiang, et al. Artificial solution and its application in verifying hydrodynamics program[J]. Computer Applications and Software, 2012(11):4-7. http://www.cnki.com.cn/Article/CJFDTotal-JYRJ201211004.htm
    [7] ROACHE P J. Verification and validation in computational science and engineering[M]. Albuquerque, NM, USA: Hermosa Publishers, 1998:8-9.
    [8] OBERKAMPF W L, TRUCANO T G. Verification and validation benchmarks[J]. Nuclear Engineering and Design, 2008, 238(3):716-743. doi: 10.1016/j.nucengdes.2007.02.032
    [9] ROY C J. Review of code and solution verification procedures for computational simulation[J]. Journal of Computational Physics, 2005, 205(1):131-156. doi: 10.1016/j.jcp.2004.10.036
    [10] 邓小刚, 宗文刚, 张来平, 等.计算流体力学中的验证与确认[J].力学进展, 2007, 37(2):279-288. doi: 10.6052/1000-0992-2007-2-J2005-149

    DENG Xiaogang, ZONG Wengang, ZHANG Laiping, et al. Verification and validation in computational fluid dynamics[J]. Advances in Mechanics, 2007, 37(2):279-288. doi: 10.6052/1000-0992-2007-2-J2005-149
    [11] 王瑞利, 林忠, 袁国兴.科学计算程序的验证和确认[J].北京理工大学学报, 2010, 30(3):353-356. http://www.cqvip.com/qk/87888X/200801/29828066.html

    WANG Ruili, LIN Zhong, YUAN Guoxing. Verification and validation in scientific computing code[J]. Transactions of Beijing Institute of Technology, 2010, 30(3):353-356. http://www.cqvip.com/qk/87888X/200801/29828066.html
    [12] NING J G, YUAN X P, MA T B, et al. Positivity-preserving moving mesh scheme for two-step reaction model in two dimensions[J]. Computers and Fluids, 2015, 123:72-86. doi: 10.1016/j.compfluid.2015.09.011
    [13] HAN J Q, TANG H Z. An adaptive moving mesh method for two-dimensional ideal magnetohydrodynamics[J]. Journal of Computational Physics, 2007, 220(2):791-812. doi: 10.1016/j.jcp.2006.05.031
    [14] 曾现洋, 刘睿, 刘希强.人为解与人为解方法[J].聊城大学学报(自然科学版), 2010, 23(1):71-75. http://d.wanfangdata.com.cn/Periodical_lcsyxb-zrkxb201001022.aspx

    ZENG Xianyang, LIU Rui, LIU Xiqiang. Manufactured solution and the method of manufactured solution[J]. Journal of Liaocheng University (Natural Science Edition), 2010, 23(1):71-75. http://d.wanfangdata.com.cn/Periodical_lcsyxb-zrkxb201001022.aspx
    [15] NING J G, WANG X, MA T B, et al. Numerical simulation of shock wave interaction with a deformable particle based on the pseudo arc-length method[J]. Science China Technological Sciences, 2015, 58(5):848-857. doi: 10.1007/s11431-015-5800-9
    [16] GOLLAN R J, JACOBS P A. About the formulation, verification and validation of the hypersonic flow solver Eilmer[J]. International Journal for Numerical Methods in Fluids, 2013, 73(1):19-57. doi: 10.1002/fld.v73.1
    [17] LI J, REN H L, NING J G, et al. Additive Runge-Kutta methods for H2/O2/Ar detonation with a detailed elementary chemical reaction model[J]. Chinese Science Bulletin, 2013, 58(11):1216-1227. doi: 10.1007/s11434-013-5766-6
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  4864
  • HTML全文浏览量:  1607
  • PDF下载量:  242
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-20
  • 修回日期:  2016-12-02
  • 刊出日期:  2018-03-25

目录

    /

    返回文章
    返回