Experimental study on the minimum ignition energy of methane at low temperature
-
摘要: 为探索低温工况下甲烷的爆炸特性,利用自行构建的实验装置,测试了温度为-90~0 ℃、压力为0.1~0.5 MPa的条件下甲烷的最小点火能。研究表明:在研究范围内,随着压力的升高,甲烷的最小点火能减小,且低压时甲烷最小点火能随初始压力的增高减小较快,高压时减小较慢;随着温度的升高,甲烷最小点火能也减小,且低压时甲烷最小点火能随初始温度的增高减小较快,高压时减小较慢;甲烷的最小点火能分别与压力平方的倒数、温度的倒数呈近似线性关系。Abstract: In this paper, we tested the minimum ingition energy (MIE) of methane at low temperature using an experimental apparatus fabricated by ourselves to characterize the explosion of methane at a low temperature ranging from -90 to 0 ℃ and under a pressure ranging from 0.1 to 0.5 MPa. It was found that, within the scope of the study, as the pressure increases, the MIE of methane decreases and does so faster with the increase of the initial pressure under low pressure but more slowly under high pressure; as the temperature increases, the MIE of methane also decreases and does so faster with the increase of the initial temperature at low pressure but more slowly under high pressure; the MIE of methane is approximately linear with the reciprocal of the square of the pressure and the that of the temperature.
-
Key words:
- methane /
- MIE /
- temperature /
- pressure
-
表 1 本研究结果与其他研究结果对比
Table 1. Comparison of this research result with other research results
表 2 最小点火能测试结果及标准偏差
Table 2. MIE test results and standard deviation
压力/MPa Em/mJ 不确定度 183 K 213 K 243 K 273 K 183 K 213 K 243 K 273 K 0.1 0.880 0.720 0.650 0.560 0.0160 0.0160 0.0220 0.0280 0.3 0.102 0.080 0.076 0.068 0.0070 0.0080 0.0110 0.0160 0.5 0.037 0.034 0.030 0.026 0.0014 0.0060 0.0100 0.0090 -
[1] KARACAN C Ö, RUIZ F A, COTÈ M, et al. Coal Mine Methane: A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction[J]. International Journal of Coal Geology, 2011, 86(2/3):121-156. https://www.cdc.gov/niosh/mining/UserFiles/works/pdfs/cmmar.pdf [2] 钱伯章, 朱建芳.世界非常规天然气资源和利用进展[J].天然气与石油, 2007, 25(2):28-32. https://www.wenkuxiazai.com/doc/3be9c60eb7360b4c2e3f6428-3.htmlQIAN Bozhang, ZHU Jianfang. Non-regular natural gas resources in the world and utilization progress[J]. Natural Gas and Oil, 2007, 25(2):28-32. https://www.wenkuxiazai.com/doc/3be9c60eb7360b4c2e3f6428-3.html [3] VANDERSTRAETEN B, TUERLINCKX D, BERGHMANS J, et al. Experimental study of the pressure and temperature dependence on the upper flammability limit of methane/air mixtures[J]. Journal of Hazardous Materials, 1997, 56(3):237-246. doi: 10.1016/S0304-3894(97)00045-9 [4] LEWIS B, VON ELBE G. Combustion, flames and explosions of gases[M]. New York: Academic Press, 1961. [5] ECKHOFF R K, NGO M, OLSEN W. On the minimum ignition energy (MIE) for propane/air[J]. Journal of Hazardous Materials, 2010, 175(1/2/3):293-297. https://www.sciencedirect.com/science/article/pii/S0304389409016409 [6] SACKS H K, NOVAK T. A method for estimating the probability of lightning causing a methane ignition in an underground mine[C]//Las Meeting, 2006: 931-936. [7] HAN J, YAMASHITA H, HAYASHI N. Numerical study on the spark ignition characteristics of a methane-air mixture using detailed chemical kinetics effect of equivalence ratio, electrode gap distance, and electrode radius on MIE, quenching distance, and ignition delay[J]. Combustion & Flame, 2010, 157(7):1414-1421. https://www.researchgate.net/publication/255215763_Numerical_study_on_the_spark_ignition_characteristics_of_a_methane-air_mixture_using_detailed_chemical_kinetics_Effect_of_equivalence_ratio_electrode_gap_distance_and_electrode_radius_on_MIE_quenching [8] KELLEY A P, JOMAAS G, LAW C K. Critical radius for sustained propagation of spark-ignited spherical flame[J]. Combust & Flame, 2009, 156(5):1006-1013. https://www.sciencedirect.com/science/article/pii/S0010218008003933 [9] 谭迎新, 张景林, 张小春.可燃气体(或蒸气)爆炸参数测定[J].兵工学报, 1995, 16(2):56-60. https://www.wenkuxiazai.com/doc/9618e8f95acfa1c7aa00ccd8.htmlTAN Yingxin, ZHANG Jinglin, ZHANG Xiaochun. The determination of explosion characteristics of combustible gases(vapors)[J].Acta Armamentarii, 1995, 16(2):56-60. https://www.wenkuxiazai.com/doc/9618e8f95acfa1c7aa00ccd8.html [10] 可燃气体与易燃液体蒸气最小静电点火能测定方法: GB/T 14288-93[S]. [11] Determination of explosion limits of gases and vapours: BS-EN-1839_2003[S]. [12] TANG C L, ZHANG S, SI Z B, et al. High methane natural gas/air explosion characteristics in confined vessel[J]. Journal of Hazardous Materials, 2014, 278:520-528. doi: 10.1016/j.jhazmat.2014.06.047 [13] KONDO S, TAKAHASHI A, TOKUHASHI K. Calculation of minimum ignition energy of premixed gases[J]. Journal of Hazardous Materials, 2003, A103:11-23. https://www.sciencedirect.com/science/article/pii/S0304389403002267 [14] YUASA T, KADOTA S, TSUE M, et al. Effects of energy deposition schedule on minimum ignition energy in spark ignition of methane/air mixtures[J]. Proceedings of the Combustion Institute, 2002, 29(1):743-750. doi: 10.1016/S1540-7489(02)80095-5 [15] WANG B, LIU X, XIE C. Effect of temperature on the minimum ignition energy (MIE) of the hydrocarbon combustible gas[J]. Journal of Safety and Environment, 2016, 16(2):92. http://www.en.cnki.com.cn/Article_en/CJFDTotal-AQHJ201602020.htm