Experimental study on fracture mechanism of coal caused by supercritical CO2 explosion
-
摘要: 为提高超临界CO2气爆低渗透煤层增透技术的应用水平,进一步研究超临界CO2气爆煤体致裂机理,利用自主研发的超临界CO2气爆装置,在多通道电液伺服相似材料试验台上,对原煤和混凝土大试件(1 m×1 m×0.5 m)进行了超临界CO2气爆实验,用动态应变仪采集试件内部监测点处的变形和破坏信息,并用工业窥镜对爆破孔内裂隙分布进行了观测。分析气爆应力波的变化规律和气爆后试件的破坏形貌特征可知,距离气爆孔由近及远依次分为粉碎区、裂隙区和震动区,其形成机理为:超临界CO2冲击气爆孔周围介质并形成远超介质抗压强度的球面纵波,介质在径向压应力作用下发生粉碎性破坏,形成粉碎区;应力波传播能量逐步衰减,不足以使介质产生压缩破坏,然而脆性材料抗压不抗拉,其产生的环向应力仍然使介质产生径向裂隙,应力波之后具有准静态加载作用的高压CO2气体进入裂隙形成气楔,促使裂隙进一步发育和扩展,形成裂隙区;裂隙区以外的介质在低能量应力波的作用下只发生震动,未发生明显破坏,即震动区。裂隙的扩展速度与其到气爆孔距离符合“S”形曲线衰减,裂隙的高速扩展发生在粉碎区,低速扩展发生在裂隙区;距离气爆孔越远,测点的峰值应变越小,相同距离内节理裂隙等结构面越复杂,峰值应变减小的幅度越大且应变波形差别越大。Abstract: In this study we carried out a series of experiments on large specimens (1 m×1 m×0.5 m) of coal and concrete using an explosive device and similar material test bench with multi-channel electro hydraulic servo to improve the application of the supercritical CO2 gas explosion in the low permeability coal seam and study the fracture mechanism of gas explosion. The internal deformation and failure information were recorded using a dynamic strain gauge, and fractures distribution in the blasting hole were observed using an industrial speculum. The gas explosion stress waves and the damage morphology after blasting show that damage areas from near to far are divided into a crushing zone, a cracking zone and a seismic zone. It is the corresponding formation mechanism that the supercritical CO2 impacts on the medium surrounding explosion hole, thereby forming the spherical wave, whose compressive strength is higher than that of the medium. Under the action of the radial compressive stress, the medium undergoes crushing destruction, and the crushing zone is thus formed. With the stress wave propagating, progressive attenuation of energy is not strong enough to cause the medium's compression failure. Brittle material is only good at resisting compression, but fails under tension. Circumferential stress generated by the stress waves still cause radial cracks. The high pressure CO2 gas with quasi-static loading action enters into fracture and forms a gas wedge that leads to the fracture's further development, called the forming of the cracking zone. Outside the cracking zone, the medium only vibrates under the low energy stress wave and no obvious damage occurs, and thus it is called the vibration area. The curve of the crack expansion velocity and distance from the gas explosion hole are in accordance with the "S" curve. High speed crack expansion occurs in the crushing zone, while the low velocity expansion occurs in the cracking zone. The farther away from the explosion hole, the smaller the peak strain of the measuring points, and the more complex the jointed fissure in the structure within the same distance; the greater the magnitude of the peak strain that decreases, the more different the strain waves.
-
Key words:
- Supercritical-CO2 /
- gas explosion /
- fracture mechanism /
- shock wave
-
表 1 试件物理力学参数
Table 1. Physical mechanics parameters of samples
试件 E/GPa σt/MPa σc/MPa ρ/(kg·m-3) μ 原煤 3.2 0.52 4.57 1200 0.25 混凝土 5.2 0.45 4.32 2200 0.27 -
[1] 谢和平, 高峰, 周宏伟, 等.煤与瓦斯共采中煤层增透率理论与模型研究[J].煤炭学报, 2013, 38(7):1101-1108. http://d.wanfangdata.com.cn/Periodical_mtxb201307001.aspxXIE Heping, GAO Feng, ZHOU Hongwei, et al. On theoretical and modeling approach to mining-enhanced permeability for simultaneous exploitation of coal and gas[J]. Journal of China Coal Society, 2013, 38(7):1101-1108. http://d.wanfangdata.com.cn/Periodical_mtxb201307001.aspx [2] 付江伟. 井下水力压裂煤层应力场与瓦斯流场模拟研究[D]. 徐州: 中国矿业大学, 2013. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D441203 [3] 陈洋.深孔控制预裂爆破增透试验研究[J].矿业安全与环境, 2014, 41(5):29-32. http://www.cqvip.com/QK/93211A/201405/662350973.htmlCHEN Yang. Test study on permeability enhancement by deep-hole controlled pre-splitting blasting[J]. Mining Safety & Environmental Protection, 2014, 41(5):29-32. http://www.cqvip.com/QK/93211A/201405/662350973.html [4] 赵阳升, 杨栋, 胡耀青, 等.低渗透煤储层煤层气开采有效技术途径的研究[J].煤炭学报, 2001, 26(5):455-458. http://www.cqvip.com/QK/96550X/2001005/5719083.htmlZHAO Yangsheng, YANG Dong, HU Yaoqing, et al. Study on the effect technology way for mining methane in low permeability coal seam[J]. Journal of China Coal Society, 2001, 26(5):455-458. http://www.cqvip.com/QK/96550X/2001005/5719083.html [5] REIMER G M. Reconnaissance techniques for determining soilgas radon concentrations: an example from prince georges country, Maryland[J]. Geophysical Research Letter, 1990, 17(6):809-812. doi: 10.1029/GL017i006p00809 [6] ANON. Cardox system brings benefits in the mining of large coal[J]. Coal International, 1995, 243(1):27-28. http://www.researchgate.net/publication/294821990_Cardox_system_brings_benefits_in_the_mining_of_large_coal [7] 邵鹏, 徐莹, 程玉生.高压气体爆破实验系统的研究[J].爆破器材, 1997, 26(5):6-8. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bpqc199705002&dbname=CJFD&dbcode=CJFQSHAO Peng, XU Ying, CHENG Yusheng. Research on the test system of airshooting[J]. Explosive Materials, 1997, 26(5):6-8. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bpqc199705002&dbname=CJFD&dbcode=CJFQ [8] 徐颖.高压气体爆破破煤模型试验研究[J].西安矿业学院学报, 1997, 17(7):322-325. http://www.cnki.com.cn/Article/CJFDTOTAL-XKXB704.004.htmXU Ying. Model test on coal breakage by high pressure airshoting[J]. Journal of Xi'An Mining Intstitue, 1997, 17(7):322-325. http://www.cnki.com.cn/Article/CJFDTOTAL-XKXB704.004.htm [9] 吴锦旗.液态CO2预裂强化预抽消突技术在突出煤层揭煤过程中的应用[J].煤炭与化工, 2015, 38(7):105-109. http://image.sciencenet.cn/olddata/kexue.com.cn/upload/blog/file/2010/8/2010828175240976253.xlsWU Jinqi. Liquid CO2 presplitting reinforcement pre-drainage outburst elimination application in outburst coal seam mining[J]. Coal and Chemical Industry, 2015, 38(7):105-109. http://image.sciencenet.cn/olddata/kexue.com.cn/upload/blog/file/2010/8/2010828175240976253.xls [10] 周西华, 门金龙, 王鹏辉, 等.井下液态CO2爆破增透工业实验研究[J].中国安全生产科学技术, 2015, 11(9):76-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgzyaqwsgltxrz201509012ZHOU Xihua, MEN Jinlong, WANG Penghui, et al. Industry experimental research on improving permeability by underground liquid CO2 blasting[J]. Journal of Safety Science and Technology, 2015, 11(9):76-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgzyaqwsgltxrz201509012 [11] 赵立朋.煤层液态CO2深孔爆破增透技术[J].煤矿安全, 2013, 44(12):76-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mkaq201312022ZHAO Lipeng. Technology of liquid carbon dioxide deep hole blasting enhancing permeability in coal seam[J]. Safety in Coal Mines, 2013, 44(12):76-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mkaq201312022 [12] 曾范永. 气爆技术提高煤体渗透性规律的研究[D]. 阜新: 辽宁工程技术大学, 2011. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D405187 [13] 高坤. 高能气体冲击煤体增透技术实验研究及应用[D]. 阜新: 辽宁工程技术大学, 2012. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D471802 [14] 陈静. 高压空气冲击煤体气体压力分布的模拟研究[D]. 阜新: 辽宁工程技术大学, 2009. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D403736 [15] 李守国.高压空气爆破致裂煤体数值模拟[J].煤矿安全, 2013, 44(12):163-165. http://d.old.wanfangdata.com.cn/Periodical/mkaq201312052LI Shouguo. Numerical simulation of coal fracture caused by high-pressure air blasting[J]. Safety in Coal Mines, 2013, 44(12):163-165. http://d.old.wanfangdata.com.cn/Periodical/mkaq201312052 [16] 孙可明, 辛利伟, 张树翠, 等.超临界CO2气爆致裂规律实验研究[J].中国安全生产科学技术, 2016, 12(7):1-5. http://manu08.magtech.com.cn/mtxb/CN/abstract/abstract13451.shtmlSUN Keming, XIN Liwei, ZHANG Shucui, et al. Experimental study on laws of crack caused by gas burst of supercritical carbon dioxide[J]. Journal of Safety Science and Technlogy, 2016, 12(7):1-5. http://manu08.magtech.com.cn/mtxb/CN/abstract/abstract13451.shtml