Dynamic response of aluminum-foam-based sandwich panelsunder hailstone impact
-
摘要: 在传统单层泡沫夹芯结构的上、下面板之间插入中面板,通过移动中面板的位置,获得了外形尺寸相同、质量相等的5种构型夹芯结构,其上层芯材与芯材总厚度比分别为0:30、10:30、15:30、20:30和30:30。在量纲分析的基础上,应用非线性动力有限元程序LS-DYNA对5种构型夹芯结构进行了冰雹撞击数值分析,研究了中面板位置对夹芯板的能量吸收、能量耗散和动态响应的影响。结果表明:中面板的存在对下层芯材能形成有效的保护;随着中面板位置由上向下移动,夹芯板的抗撞击性能呈现由大到小再增大的态势。数值计算结果对抗冰雹撞击夹芯结构的优化设计具有一定的参考价值。Abstract: In this work, by inserting an additional sheet, called the middle sheet, between the upper and lower sheets of a traditional single-layer foam core sandwich panel consisting of a core with bonded with two sheets on either side, we fabricated sandwich panels with five structures that have the same dimensions and weights by changing the position of the middle sheet. The ratios of the upper core thickness to the total core thickness are 0:30, 10:30, 15:30, 20:30 and 30:30, respectively. On the basis of dimensional analysis, we conducted numerical analysis of the sandwich panels subjected to hailstone impact using the nonlinear finite element program LS-DYNA, and investigated the influence of the middle sheet's position on the energy absorption, energy dissipation and dynamic response of the sandwich panel. The numerical results show that the middle sheet provides an effective protection for the lower core, and the anti-impact performance of the sandwich panel exhibited a tendency to change from strong to weak and then from weak to strong as the middle sheet moved along the direction of the hailstone impact. The results of the numerical simulation offer a reference for the optimization design of the sandwich structures under hailstone impact.
-
Key words:
- aluminum-foam-based sandwich panel /
- hailstone /
- impact /
- dimensional analysis /
- LS-DYNA
-
表 1 夹芯结构在不同撞击速度下的吸能情况
Table 1. Energy absorption of sandwich panels at different impact velocities
H1:H 撞击速度/
(m·s-1)面板吸能/J 芯材比吸能/(J·kg-1) 上 中 下 上层 下层 10:30 80 5.620 0.203 0.074 99.322 29.965 120 31.138 2.920 0.407 340.229 109.739 160 52.602 36.984 5.530 728.125 247.094 200 58.859 65.632 58.394 1 091.181 497.509 20:30 80 5.561 0.114 0.078 62.981 29.444 120 31.630 1.111 0.757 236.621 90.341 160 50.551 16.434 17.913 582.899 186.569 200 57.139 85.902 48.619 931.456 365.222 30:30 80 6.540 - 0.056 47.779 120 35.296 - 0.179 175.520 160 51.697 - 2.980 508.573 200 60.143 - 18.799 934.173 -
[1] SOUTER R K, EMERSON J B. Summary of available hail literature and the effect of hail on aircraft in flight: NASA Technical Note 2734[R]. Washington, 1952: 1-33. [2] ZHU F, ZHAO L M, LU G X, et al. A numerical simulation of the blast impact of square metallic sandwich panels[J]. International Journal of Impact Engineering, 2009, 36(5):687-699. doi: 10.1016/j.ijimpeng.2008.12.004 [3] HANSSEN A G, GIRARD Y, OLOVSSON L, et al. A numerical model for bird strike of aluminium foam-based sandwich panels[J]. International Journal of Impact Engineering, 2006, 32(7):1127-1144. doi: 10.1016/j.ijimpeng.2004.09.004 [4] HOU W H, ZHU F, LU G X, et al. Ballistic impact experiments of metallic sandwich panels with aluminum[J]. International Journal of Impact Engineering, 2010, 37(10):1045-1055. doi: 10.1016/j.ijimpeng.2010.03.006 [5] 祖国胤, 刘佳, 李小兵, 等.泡沫铝夹芯板低速冲击性能研究[J].东北大学学报(自然科学版), 2014, 35(11):1583-1587. doi: 10.3969/j.issn.1005-3026.2014.11.015ZU Guoyin, LIU Jia, LI Xiaobing, et al. Research on the low-velocity impact performance of aluminum foam sandwich panels[J]. Journal of Northeastern University (Natural Science), 2014, 35(11):1583-1587. doi: 10.3969/j.issn.1005-3026.2014.11.015 [6] 杨飞, 王志华, 赵隆茂.泡沫铝夹芯板抗侵彻性能的数值研究[J].科学技术与工程, 2011, 11(15):3377-3383. doi: 10.3969/j.issn.1671-1815.2011.15.005YANG Fei, WANG Zhihua, ZHAO Longmao. Numerical simulation on anti-penetration performance of aluminum foam-based sandwich panels[J]. Science Technology and Engineering, 2011, 11(15):3377-3383. doi: 10.3969/j.issn.1671-1815.2011.15.005 [7] 李志斌, 卢芳云.泡沫铝夹芯板压入和侵彻性能的实验研究[J].振动与冲击, 2015, 34(4):1-5. http://d.old.wanfangdata.com.cn/Periodical/zdycj201504002LI Zhibin, LU Fangyun. Tests for indentation and perforation of sandwich panels with aluminium foam core[J]. Journal of Vibration and Shock, 2015, 34(4):1-5. http://d.old.wanfangdata.com.cn/Periodical/zdycj201504002 [8] 张培文, 李鑫, 王志华, 等.爆炸载荷作用下不同面板厚度对泡沫铝夹芯板动力响应的影响[J].高压物理学报, 2013, 27(5):699-703. doi: 10.11858/gywlxb.2013.05.007ZHANG Peiwen, LI Xin, WANG Zhihua, et al. Effect of face sheet thickness on dynamic response of aluminum foam sandwich panels under blast loading[J]. Chinese Journal of High Pressure Physics, 2013, 27(5):699-703. doi: 10.11858/gywlxb.2013.05.007 [9] ANGHILERI M, CASTELLETTI L M L, IMVERNIZZI F, et al. A survey of numerical models for hail impact analysis using explicit finite element codes[J]. International Journal of Impact Engineering, 2005, 31(8):929-944. doi: 10.1016/j.ijimpeng.2004.06.009 [10] 谈庆明.量纲分析[M].合肥:中国科学技术大学出版社, 2005:9-19. [11] ASTM F320-1994. Standard test method for hail impact resistance of aerospace transparent enclosures[S]. 1994. [12] COMBESCURE A, CHUZEL-MARMOT Y, FABIS J. Experimental study of high-velocity impact and fracture of ice[J]. International Journal of Solids and Structures, 2011, 48(20):2779-790. doi: 10.1016/j.ijsolstr.2011.05.028 [13] 张振华, 朱锡, 白雪飞.水下爆炸冲击波的数值模拟研究[J].爆炸与冲击, 2004, 24(2):182-188. http://www.bzycj.cn/CN/abstract/abstract9940.shtmlZHANG Zhenhua, ZHU Xi, BAI Xuefei. The study on numerical simulation of underwater blast wave[J]. Explosion and Shock Waves, 2004, 24(2):182-188. http://www.bzycj.cn/CN/abstract/abstract9940.shtml [14] HAYDUK R J, THOMSON R G. An improved analytical treatment of the denting of thin sheets by hail: NASA Technical Note D-6102[R]. Washington, 1971: 1-36. [15] BOYER H E. Atlas of stress-strain curves[M]. 2d ed. ASM International, 2002:311. [16] 《中国航空材料手册》编辑委员会.中国航空材料手册:铝合金、镁合金[M].2版.北京:中国标准出版社, 2002:39-83. [17] 尚金堂. 新型高强度胞状铝合金Ⅱ及层合梁三点弯曲研究[D]. 南京: 东南大学, 2003. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y560921