Experimental investigation on suppression of starch flame by ultrafine silicon dioxide powders
-
摘要: 为了探究不同粒径二氧化硅粉体抑制效果上的差异,采用小尺寸竖直燃烧管道系统,研究添加10 μm和30 nm二氧化硅粉体时,不同粒径小麦淀粉燃烧的火焰传播、温度、速度等参数特性的变化。实验结果表明:超细二氧化硅粉体能减弱小麦淀粉燃烧反应强度;30 nm二氧化硅粉体抑制效果优于10 μm二氧化硅,当小麦淀粉粒径小于25 μm时,质量浓度为0.43 kg/m3、粒径30 nm的超细二氧化硅粉体可使小麦淀粉火焰亮度明显下降,最高温度下降38.07%,最大速度和平均速度分别下降42.25%、65.59%;超细二氧化硅粉体主要起物理抑制作用,抑制效果与小麦粒径成反比关系,小麦粒径越小,二氧化硅抑制效果越好。Abstract: It is well known that the ultrafine silicon dioxide powder has a certain suppressing effect on the wheat starch flame. In this work, we explore the difference in this effect on the silicon dioxide powder due to different particle sizes, the changes of flame propagation, temperature, velocity and other parameters of the wheat starch combustion by adding 10 μm and 30 nm silicon dioxide powders. The experimental results show that the ultrafine silicon dioxide powder can reduce the wheat starch's burning reaction strength. The 30 nm powder produces a more effective suppression than the 10 μm powder. When the wheat starch powder's particle size is below 25 μm, The ultra fine powders with a mass concentration of 0.43 kg/m3 and a grain size of 30 nm can significantly decrease the wheat starch's flame brightness, reducing its maximum temperature by 38.07%, its maximum and average velocities by 42.25% and 65.59%, respectively. The ultrafine silicon dioxide exerts mainly an effect of physical suppression, which is inversely proportional to the particle size of wheat starch grains. The smaller the wheat starch grain size, the better the effect of silicon dioxide suppression.
-
Key words:
- ultrafine powder /
- dust combustion /
- flame propagation /
- inertia and suppression
-
表 1 小麦样品筛出粒径
Table 1. Particle size of the wheat sample screened
序号 筛分规格/目 粒径范围/μm 1 200~300 48~75 2 300~400 38~48 3 400~500 25~38 4 500以上 0~25 表 2 实验工况
Table 2. Experimental condition
工况 小麦淀粉粒径/μm 二氧化硅粒径/μm 1 48~75 2 48~75 10 3 48~75 0.03 4 38~48 5 38~48 10 6 38~48 0.03 7 25~38 8 25~38 10 9 25~38 0.03 10 0~25 11 0~25 10 12 0~25 0.03 -
[1] YAN X, YU J. Dust explosion incidents in China[J]. Process Safety Progress, 2012, 31(2):187-189. doi: 10.1002/prs.v31.2 [2] 徐文庆, 陈志, 黄莹, 等.密闭空间中甘薯粉爆炸特性的试验研究[J].安全与环境学报, 2011, 11(5):158-161. http://d.wanfangdata.com.cn/Periodical_aqyhjxb201105034.aspxXU Wenqing, CHEN Zhi, HUANG Ying, et al. On the explosive characteristic of the sweet potato starch in a confined vessel[J]. Journal of Safety and Environment, 2011, 11(5):158-161. http://d.wanfangdata.com.cn/Periodical_aqyhjxb201105034.aspx [3] 李刚, 刘晓燕, 钟圣俊, 等.粮食伴生粉尘最低着火温度的实验研究[J].东北大学学报(自然科学版), 2005, 26(2):145-147. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_dbdxxb200502012LI Gang, LIU Xiaoyan, ZHONG Shengjun, et al. Experimental investigation on minimum ignition temperature (MIT) of dust concomitant with grain[J]. Journal of Northeastern University (Natural Science), 2005, 26(2):145-147. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_dbdxxb200502012 [4] 高伟, 圆井道也, 荣建忠, 等.粒径分布对有机粉尘爆炸中火焰结构的影响[J].燃烧科学与技术, 2013, 19(2):157-162. http://journals.tju.edu.cn/rs/OA/pdfdow.aspx?Sid=201302011GAO Wei, MARUI Michiya, RONG Jianzhong, et al. Effects of particle size distribution on flame structure during organic dust explosion[J]. Journal of Combustion Science and Technology, 2013, 19(2):157-162. http://journals.tju.edu.cn/rs/OA/pdfdow.aspx?Sid=201302011 [5] PROUST C, VEYSSIERE B. Fundamental properties of flames propagating in starch dust-air mixtures[J]. Combustion Science & Technology, 2007, 62(4/5/6):149-172. http://www.researchgate.net/publication/245311467_Fundamental_Properties_of_Flames_Propagating_in_Starch_Dust-Air_Mixtures [6] 王健, 李新光, RADANDT S, 等.管道相连泄爆容器中粉尘爆炸的实验研究[J].实验流体力学, 2010, 24(4):39-43. http://d.wanfangdata.com.cn/Periodical_ltlxsyycl201004009.aspxWANG Jian, LI Xinguang, RADANDT S, et al. Experimental research on dusts explosion in interconnected vented vessels[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(4):39-43. http://d.wanfangdata.com.cn/Periodical_ltlxsyycl201004009.aspx [7] 宫婕, 汪泉, 李志敏, 等.柱形爆炸容器内爆炸冲击波的传播规律研究[J].爆破, 2017, 34(4):17-21. http://d.old.wanfangdata.com.cn/Periodical/bp201704004GONG Jie, WANG Quan, LI Zhimin, et al. Research on propagation law of explosive shock wave in cylindrical explosion containment vessel[J]. Blasting, 2017, 34(4):17-21. http://d.old.wanfangdata.com.cn/Periodical/bp201704004 [8] GIERAS M. Studies on process of dust explosion suppression by water spray[J]. Archivum Combustionis, 2011, 31. [9] 郭晶, 王庆.密闭空间煤粉爆炸特性的实验研究[J].爆破, 2017, 34(3):31-36. http://d.old.wanfangdata.com.cn/Periodical/bp201703006GUO Jing, WANG Qing. Experimental studies on explosion characteristics of coal dust in confined space[J]. Blasting, 2017, 34(3):31-36. http://d.old.wanfangdata.com.cn/Periodical/bp201703006 [10] 徐峰.二氧化硅消光剂及应用[J].现代涂料与涂装, 2001, 1(2):39-40. https://www.wenkuxiazai.com/doc/fab46245767f5acfa1c7cdab-3.htmlXU Feng. Silica matting agent and its application[J]. Modern Paint & Finishing, 2001, 1(2):39-40. https://www.wenkuxiazai.com/doc/fab46245767f5acfa1c7cdab-3.html [11] 王相田, 胡黎明, 顾达.超细颗粒分散过程分析[J].化学通报, 1995(5):13-17. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=89779WANG Xiangtian, HU Liming, GU Da. Analysis of dispersion process of ultrafine particles[J]. Chemistry, 1995(5):13-17. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=89779 [12] 张世伟, 杨乃恒.纳米粒子在气体流动中的团聚过程研究[J].真空科学与技术学报, 2001, 21(2):87-90. http://d.wanfangdata.com.cn/Periodical_zkkx200102002.aspxZHANG Shiwei, YANG Naiheng. Nanometer particles agglomeration in gas flows[J]. Chinese Journal of Vacuum Science and Technology, 2001, 21(2):87-90. http://d.wanfangdata.com.cn/Periodical_zkkx200102002.aspx [13] BALLANTYNE A, MOSS J B. Fine wire thermocouple measurements of fluctuating temperature[J]. Combustion Science & Technology, 1976, 17(1/2):63-72. http://www.researchgate.net/publication/236475482_Fine_wire_thermocouple_measurements_of_fluctuating_temperature [14] 武锦涛, 陈纪忠, 阳永荣.移动床中颗粒接触传热的数学模型[J].化工学报, 2006, 57(4):719-725. http://d.wanfangdata.com.cn/Periodical_hgxb200604003.aspxWU Jintao, CHEN Jizhong, YANG Yongrong. Model of contact heat transfer in granular moving bed[J]. CIESC Journal, 2006, 57(4):719-725. http://d.wanfangdata.com.cn/Periodical_hgxb200604003.aspx [15] 卓磊, 陈文革, 张洋, 等.成型方法对纳米二氧化硅陶瓷烧结行为及微观结构的影响[J].人工晶体学报, 2014, 43(9):2313-2318. http://d.old.wanfangdata.com.cn/Periodical/rgjtxb98201409024ZHUO Lei, CHEN Wenge, ZHANG Yang, et al. Influence of molding methods on the sintering behavior and microstructure of silica nanoceramics[J]. Journal of Synthetic Crystals, 2014, 43(9):2313-2318. http://d.old.wanfangdata.com.cn/Periodical/rgjtxb98201409024 [16] 马登军.纳米材料的表面和界面效应[J].河北建筑工程学院学报, 1996(4):37-42. http://www.doc88.com/p-9045608981540.htmlMA Dengjun. The effect of surface and interface of nanometer materials[J]. Journal of Hebei Institute of Architecture and Civil Engineering, 1996(4):37-42. http://www.doc88.com/p-9045608981540.html [17] 翟春婕, 曹兆楼, 郑怀兵.基于图像的火焰锋面法向速度场测量研究[J].火灾科学, 2016, 25(1):28-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hzkx201601004ZHAI Chunjie, CAO Zhaolou, ZHENG Huaibing. Measurement of normal velocity field at the fire front based on imaging analysis[J]. Fire Safety Science, 2016, 25(1):28-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hzkx201601004 [18] PROUST C, VEYSSIERE B. Fundamental properties of flame propagating in starchdust-air mixtures[J]. Combustion Science & Technology, 2007, 62(4/5/6):149-172. http://www.researchgate.net/publication/245311467_Fundamental_Properties_of_Flames_Propagating_in_Starch_Dust-Air_Mixtures [19] GOROSHIN S, BIDABADI M, LEE J H S. Quenching distance of laminar flame inaluminum dust clouds[J]. Combustion & Flame, 1996, 105(1/2):147-160. https://www.sciencedirect.com/science/article/pii/0010218095001832 [20] ANEZAKI T, DOBASHI R. Effects of particle materials on flame propagation duringdust explosions[C]//Proceedings of the 5th International Seminar on Fire and Explosion Hazards. Edinburgh, UK, 2007.