Influence of liquid fuel on the detonation characteristics of continuous rotating detonation engine
-
摘要: 为了研究液态燃料对连续旋转爆轰发动机爆轰特性的影响,采用CE/SE方法对以汽油/富氧空气为燃料的CRDE进行数值模拟,分析了不同液滴半径、当量比对爆轰性能参数的影响。计算结果表明:随着液滴半径增大,爆轰压力峰值、温度峰值以及爆轰波速度均降低,且压力峰值与温度峰值在爆轰波传播过程中出现不稳定现象;当增大到70 μm时,爆轰波将无法成功起爆。随着当量比的增大,CRDE爆轰波速度及平均推力增大,爆轰压力、温度以及气相周向速度的峰值均先增大后减小。在当量比1.1附近,爆轰压力与温度的峰值出现极大值;而气相周向速度峰值的极大值出现在当量比0.9附近。基于燃料的比冲随着当量比增大而减小。Abstract: In this paper, based on two-dimensional conservation element and solution element(CE/SE), we simulated the detonation process of CRDE with gasoline and oxygen-enriched air to study the influence of liquid fuel on the detonation characteristics of the continuous rotating detonation engine. The effects of different droplet radiuses and equivalence ratios on the detonation parameters were analyzed. Our calculation results show that the velocity of the detonation wave and the peak values of the detonation pressure and temperature decreased with the increase of the droplet radius, and the peak values of the pressure and temperature became unstable during the propagation of the detonation wave. However, the detonation wave were not initiated successfully when the radius rose to 70 μm. The velocity of the detonation wave and the average thrust of CRDE increased with the rising of the equivalence ratio, while the peak values of the detonation pressure, temperature and gas phase's circumferential velocity increased first and then decreased. The peak values of the detonation pressure and temperature reached the maximum when the equivalence ratio was about 1.1, while the maximum of the gas phase's circumferential velocity occurred when the equivalence ratio was about 0.9.The fuel-based specific impulse decreased at the increase of the equivalence ratio.
-
Key words:
- filling conditions /
- continuous rotating detonation engine /
- CE/SE /
- specific impulse
-
表 1 不同液滴半径条件下爆轰情况
Table 1. Parameters of detonation at different droplet radius
液滴半径/μm 爆轰压力峰值/MPa 爆轰温度峰值/K 爆轰波速度/(m·s-1) 20 4.20 3 050 1 568 30 4.11 2 957 1 466 40 3.65 2 743 1 370 50 3.35 2 608 1 265 60 2.78 2 553 1 165 70 - - - -
[1] KAILASANATH K. Review of propulsion applications of detonation waves[J]. AIAA journal, 2000, 38(9):1698-1708. doi: 10.2514/2.1156 [2] 王健平, 周蕊, 武丹.连续旋转爆轰发动机的研究进展[J].实验流体力学, 2015, 29(4):12-25. http://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201504002.htmWANG Jianping, ZHOU Rui, WU Dan. Progress of continuously rotating detonation engine research[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(4):12-25. http://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201504002.htm [3] BYKOVSKII F A, ZHDAN S A, ADERNIKOV E F. Continuous spin detonation[J]. Journal of Propulsion and Power, 2006, 22(6):1204-1216. doi: 10.2514/1.17656 [4] BYKOVSKII F A, ZHDAN S A, ADERNIKOV E F. Continuous spin detonation of fuel-air mixtures[J]. Combustion, Explosion, and Shock Waves, 2006, 42(4):463-471. doi: 10.1007/s10573-006-0076-9 [5] ZHDAN S A, SYRYAMIN A S. Numerical modeling of continuous detonation in non-stoichiometric hydrogen-oxygen mixtures[J]. Combustion, Explosion, and Shock Waves, 2013, 49(1):69-78. doi: 10.1134/S0010508213010085 [6] SCHWER D, KAILASANATH K. Numerical investigation of the physics of rotating detonation engines[J]. Proceedings of the Combustion Institute, 2011, 33(2):2195-2202. doi: 10.1016/j.proci.2010.07.050 [7] KINDRACKI J. Experimental research on rotating detonation in liquid fuel-gaseous air mixtures[J]. Aerospace Science and Technology, 2015, 43:445-453. doi: 10.1016/j.ast.2015.04.006 [8] DAVIDENKO D M, GOKALP I, KUDRYAVTSEV A N. Numerical study of the continuous detonation wave rocket engine: AIAA 2008-2680[R]. 2008. [9] TSUBOI N, WATANABE Y, KOJIMA T, et al. Numerical estimation of the thrust performance on a rotating detonation engine for a hydrogen-oxygen mixture[J]. Proceedings of the Combustion Institute, 2014, 35(2):2005-2013. https://www.sciencedirect.com/science/article/pii/S1540748914004313 [10] WANG Y H, WANG J P. Effect of equivalence ratio on the velocity of rotating detonation[J]. International Journal of Hydrogen Energy, 2015, 40(25):7949-7955. doi: 10.1016/j.ijhydene.2015.04.072 [11] 刘世杰, 刘卫东, 林志勇, 等. 连续旋转爆震波传播过程实验研究[C]//第十五届全国激波与激波管学术会议论文集, 2012. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=7714633 [12] 王超, 刘卫东, 刘世杰, 等.连续旋转爆震波传播模态试验[J].国防科技大学学报, 2015, 37(4):121-127. doi: 10.11887/j.cn.201504021WANG Chao, LIU Weidong, LIU Shijie, et al. Experiment on the propagation mode of continuous rotating detonation wave[J]. Journal of National University of Defense Technology, 2015, 37(4):121-127. doi: 10.11887/j.cn.201504021 [13] 郑权, 翁春生, 白桥栋.当量比对液体燃料旋转爆轰发动机爆轰影响实验研究[J].推进技术, 2015, 36(6):947-952. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tjjs201506020ZHENG Quan, WENG Chunsheng, BAI Qiaodong. Experimental study on effects of equivalence ratio on detonation characteristics of liquid-fueled rotating detonation engine[J]. Journal of Propulsion Technology, 2015, 36(6):947-952. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tjjs201506020 [14] 武丹, 刘岩, 王健平.连续旋转爆轰发动机参数特性的三维数值模拟[J].航空动力学报, 2015, 30(7):1576-1582. http://www.cnki.com.cn/Article/CJFDTotal-HKDI201507008.htmWU Dan, LIU Yan, WANG Jianping. Three-dimensional numerical simulation of the parametric properties of continuously rotating detonation engine[J]. Journal of Aerospace Power, 2015, 30(7):1576-1582. http://www.cnki.com.cn/Article/CJFDTotal-HKDI201507008.htm [15] 归明月, 范宝春, 张旭东, 等.旋转爆轰的三维数值模拟[J].推进技术, 2010, 31(1):82-86. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU201407003026.htmGUI Mingyue, FAN Baochun, ZHANG Xudong, et al. Three-dimensional simulation of continuous spin detonation engine[J]. Journal of Propulsion Technology, 2010, 31(1):82-86. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU201407003026.htm [16] 李宝星, 翁春生.连续旋转爆轰发动机气液两相爆轰波传播特性二维数值研究[J].固体火箭技术, 2015, 38(5):646-652. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_gthjjs201505008LI Baoxing, WENG Chunsheng. Numerical investigation on two-dimensional gas-liquid two-phase detonation wave propagation characteristics of continuous rotating detonation engine[J]. Journal of Solid Rocket Technology, 2015, 38(5):646-652. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_gthjjs201505008 [17] 翁春生, 王浩.计算内弹道学[M].北京:国防工业出版社, 2006. [18] 马丹花, 翁春生.二维守恒元和求解元方法在两相爆轰流场计算中的应用[J].燃烧科学与技术, 2010, 16(1):85-91. http://d.old.wanfangdata.com.cn/Periodical/rskxyjs201001016MA Danhua, WENG Chunsheng. Application of two-dimensional CE/SE method to calculation of two-phase detonation Flow Field[J]. Journal of Combustion Science and Technology, 2010, 16(1):85-91. http://d.old.wanfangdata.com.cn/Periodical/rskxyjs201001016 [19] 洪滔, 秦承森.气体-燃料液滴两相系统爆轰的数值模拟[J].爆炸与冲击, 1999, 19(4):335-342. http://www.bzycj.cn/CN/abstract/abstract10364.shtmlHONG Tao, QIN Chengsen. Numerical simulation of detonation of gas-fuel droplet two-phase system[J]. Explosion and Shock Waves, 1999, 19(4):335-342. http://www.bzycj.cn/CN/abstract/abstract10364.shtml [20] 彭振, 翁春生.脉冲爆轰发动机中等离子体点火的数值计算[J].工程力学, 2012, 29(5):242-250. http://d.old.wanfangdata.com.cn/Conference/7761871PENG Zhen, WENG Chunsheng. Numerical calculation of plasma ignition on pulse detonation engine[J]. Engineering Mechanics, 2012, 29(5):242-250. http://d.old.wanfangdata.com.cn/Conference/7761871 [21] 王治武, 严传俊, 李牧, 等.燃油粒度对两相PDE爆震波速的影响[J].工程热物理学报, 2006, 27(6):1057-1059. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb200606050WANG Zhiwu, YAN Chuanjun, LI Mu, et al. Droplet size effect on detonation velocity of two-phase pulse detonation engine[J]. Journal of Engineering Thermophysics, 2006, 27(6):1057-1059. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb200606050 期刊类型引用(9)
1. 贾冰岳,张义宁,孟皓,潘虎,洪延姬. 圆环形燃烧室两相混气旋转爆震波传播过程实验研究. 推进技术. 2024(02): 102-109 . 百度学术
2. 邓辰峰. 爆轰波模拟中一个保正的有限体积WENO格式. 西安文理学院学报(自然科学版). 2023(03): 22-29+39 . 百度学术
3. 张鑫,马虎. 冲压旋转爆震发动机隔离段抗反压特性数值研究. 工程与试验. 2023(03): 21-24+41 . 百度学术
4. 葛高杨,马虎,夏镇娟,马元,侯世卓,邓利,周长省. 环缝宽度对两相旋转爆轰波压力与频率特性影响实验研究. 推进技术. 2022(08): 200-210 . 百度学术
5. 韩新培,翁春生,郑权,续晗,肖强,冯文康. 中心锥对旋转爆轰发动机内外流场影响的三维数值模拟研究. 推进技术. 2022(10): 285-295 . 百度学术
6. 贾冰岳,张义宁,潘虎,洪延姬. 液态碳氢燃料旋转爆震发动机起爆过程试验研究. 推进技术. 2021(04): 906-914 . 百度学术
7. 谢峤峰,王兵,董琨. 基于连续旋转爆震的推进技术研究进展. 气体物理. 2020(01): 1-23 . 百度学术
8. 胡洪波,严宇,张锋,洪流,陈宏玉. 煤油富燃燃气旋转爆震燃烧实验研究. 推进技术. 2020(04): 881-888 . 百度学术
9. 王放,翁春生,武郁文,白桥栋,郑权. 气体与液体两相连续旋转爆轰波二维数值模拟研究. 兵工学报. 2020(04): 681-691 . 百度学术
其他类型引用(16)
-