Numerical simulation of influence of different initial magnetic fields on process of shock wave shocking R22 heavy gas column
-
摘要: 基于磁流体动力(magneto-hydrodynamic,MHD)方程,采用CTU+CT方法,对在不同初始磁场作用下的平面入射激波与磁化R22重质气柱作用过程进行了数值研究。数值结果清晰地描述了不同初始磁场条件时激波诱导R22气柱界面不稳定性的过程,揭示了磁场控制界面不稳定性的机理。另外,还分析了磁感应强度对界面不稳定性的影响,发现在磁场较小时,涡层附着于界面,但随着磁感应强度的增大,平均涡量随之增大,涡层与界面逐渐分离,最终更好地抑制了界面不稳定性。同时,还发现平均涡度拟能随着磁感应强度的增大而减小,而垂直磁场比平行磁场更能降低平均涡度拟能,因而平均涡度拟能可较好地反映磁场对不稳定性的影响效果。Abstract: In this paper, the process of the plane incident shock wave shocking a magnetized R22 heavy circular gas column with different initial magnetic field was numerically studied based on the magneto-hydrodynamic (MHD) equation and CTU+CT method. The numerical results clearly describe the development of the instabilities induced by the shock waves on the interface of the R22 gas column with different initial magnetic field, and reveal the mechanism of the magnetic field governing the instabilities. In addition, the influence of different magnetic field strengths on the instabilities was analyzed, and it was found that when the magnetic field strength is small, the vortex layer attaches to the interface; that, with the increase of the magnetic field strength, the vortex layer gradually separates from the interface and the mean vorticity increases; and, finally, that the instabilities on the interface are brought under control. Meanwhile, with the increase of the magnetic field, the average enstrophy decreases, and the vertical magnetic field exerts a better inhibition effect on the average enstrophy than the parallel magnetic field. Thus the average enstrophy can fairly well reflect the effect of the magnetic field on the instabilities.
-
Key words:
- magneto-hydrodynamic equation /
- vorticity /
- magnetic field /
- instability /
- shock wave
-
表 1 流场平均涡量
Table 1. Average vorticity
初始条件 Ω/s-1 B/T θ/(°) 85 μs 165 μs 200 μs 250 μs 450 μs 945 μs 0 - 55.79 121.1 145.5 142.1 190.7 255.1 0.01 90 56.21 117.0 140.3 131.8 155.5 205.3 0.01 0 56.14 116.9 139.9 132.8 169.9 270.0 0.05 90 68.44 132.5 156.5 169.8 216.4 289.9 0.05 0 60.65 123.2 147.0 169.5 247.4 354.5 表 2 流场平均涡度拟能
Table 2. Average enstrophy
初始条件 Ω2/s-2 B/T θ/(°) 85 μs 165 μs 200 μs 250 μs 450 μs 945 μs 0 - 6.604×106 1.332×107 1.557×107 1.116×107 1.153×107 1.135×107 0.01 90 1.899×106 3.527×106 4.694×106 3.144×106 3.334×106 4.533×106 0.01 0 4.275×106 7.098×106 7.332×106 6.285×106 7.132×106 9.524×106 0.05 90 1.714×106 2.679×106 3.586×106 2.932×106 3.268×106 4.572×106 0.05 0 3.343×106 4.817×106 5.036×106 5.413×106 6.965×106 9.723×106 -
[1] BROUILLETTE M. The Richtmyer-Meshkov instability[J]. Annual Review of Fluid Mechanics, 2002, 34:445-468. doi: 10.1146/annurev.fluid.34.090101.162238 [2] HAAS J F, STURTEVANT B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities[J]. Journal of Fluid Mechanics, 1987, 181:41-76. doi: 10.1017/S0022112087002003 [3] TOMKINS C, KUMAR S, ORLICZ G, et al. An experimental investigation of mixing mechanisms in shock-accelerated flow[J]. Journal of Fluid Mechanics, 2008, 611:131-150. http://adsabs.harvard.edu/abs/2008JFM...611..131T [4] 范美如, 翟志刚, 司廷, 等.激波与不同形状界面作用的数值模拟[J].中国科学:物理学、力学、天文学, 2011, 41(7):862-869. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jgxk201107009&dbname=CJFD&dbcode=CJFQFAN Meiru, ZHAI Zhigang, SI Ting, et al. Numerical simulation of interaction with different shape accelerated by a planar shock[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2011, 41(7):862-869. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jgxk201107009&dbname=CJFD&dbcode=CJFQ [5] FAN M R, ZHAI Z G, SI T, et al. Numerical study on the evolution of the shock-accelerated SF 6 interface: Influence of the interface shape[J]. Science China: Physics, Mechanics & Astronomy, 2012, 55(2):284-296. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jgxg201202016&dbname=CJFD&dbcode=CJFQ [6] 王显圣, 司廷, 罗喜胜, 等.反射激波冲击重气柱的RM不稳定性数值研究[J].力学学报, 2012, 44(4):664-672. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=lxxb201204003&dbname=CJFD&dbcode=CJFQWANG Xiansheng, SI Ting, LUO Xisheng, et al. Numerical study on the RM instability of a heavy-gas cylinder interacted with reshock[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(4):664-672. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=lxxb201204003&dbname=CJFD&dbcode=CJFQ [7] SI T, ZHAI Z, YANG J, et al. Experimental investigation of reshocked spherical gas interfaces[J]. Physics of Fluids, 2012, 24(5):054101. doi: 10.1063/1.4711866 [8] CHANDRASEKHAR S. Hydrodynamic and hydromagnetic stability[M]. Courier Dover Publications, 2013:441-453. [9] WHEATLEY V, PULLIN D I, SAMTANEY R. Stability of an impulsively accelerated density interface in magnetohydrodynamics[J]. Physical Review Letters, 2005, 95(12):125002. doi: 10.1103/PhysRevLett.95.125002 [10] WHEATLEY V, SAMTANEY R, PULLIN D I. The magnetohydrodynamic Richtmyer-Meshkov instability: The transverse field case[C]//The 18th Australasian Fluid Mechanics Conference. Australasian Fluid Mechanics Society, 2012. [11] CAO J, WU Z, REN H, et al. Effects of shear flow and transverse magnetic field on Richtmyer-Meshkov instability[J]. Physics of Plasmas, 2008, 15(4):042102. doi: 10.1063/1.2842367 [12] KHAN M, MANDAL L, BANERJEE R, et al. Development of Richtmyer-Meshkov and Rayleigh-Taylor instability in the presence of magnetic field[J]. Nuclear Instruments and Methods in Physics Research Section: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 653(1):2-6. doi: 10.1016/j.nima.2011.02.086 [13] SHIN M S, STONE J M, SNYDER G F. The magnetohydrodynamics of shock-cloud interaction in three dimensions[J]. The Astrophysical Journal, 2008, 680(1):336-348. doi: 10.1086/529160 [14] 李源, 罗喜胜.黏性、表面张力和磁场对Rayleigh-Taylor不稳定性气泡演化影响的理论分析[J].物理学报, 2014, 63(8):277-285. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=wlxb201408037&dbname=CJFD&dbcode=CJFQLI Yuan, LUO Xisheng. Theoretical analysis of effects of viscosity, surface tension, and magnetic field on the bubble evolution of Rayleigh-Taylor instability[J]. Acta Physica Sinica, 2014, 63(8):277-285. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=wlxb201408037&dbname=CJFD&dbcode=CJFQ [15] 林震亚, 张焕好, 陈志华, 等.磁场对激波冲击R22重气柱作用过程影响的数值模拟[J].爆炸与冲击, 2017, 37(4):748-758. http://www.bzycj.cn/CN/abstract/abstract9778.shtmlLIN Zhenya, ZHANG Huanhao, CHEN Zhihua, et al. Influence of magnetic field on interaction of shock wave with R22 heavy gas column[J]. Explosion and Shock Waves, 2017, 37(4):748-758. http://www.bzycj.cn/CN/abstract/abstract9778.shtml [16] SALTZMAN J. An unsplit 3D upwind method for hyperbolic conservation laws[J]. Journal of Computational Physics, 1994, 115(1):153-168. doi: 10.1006/jcph.1994.1184 [17] GARDINER T A, STONE J M. An unsplit Godunov method for ideal MHD via constrained transport in three dimensions[J]. Journal of Computational Physics, 2008, 227(8):4123-4141. doi: 10.1016/j.jcp.2007.12.017 [18] 沙莎, 陈志华, 薛大文.激波冲击R22重气柱所导致的射流与混合研究[J].物理学报, 2013, 62(14):291-300. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=wlxb201314045&dbname=CJFD&dbcode=CJFQSHA Sha, CHEN Zhihua, XUE Dawen. The generation of jet and mixing induced by the interaction of shock wave with R22 cylinder[J]. Acta Physica Sinica, 2013, 62(14):291-300. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=wlxb201314045&dbname=CJFD&dbcode=CJFQ [19] HAAS J F, STURTEVANT B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities[J]. Journal of Fluid Mechanics, 1987, 181:41-76. doi: 10.1017/S0022112087002003 [20] HERRING J R, KERR R M. Development of enstrophy and spectra in numerical turbulence[J]. Physics of Fluids: Fluid Dynamics, 1993, 5(11):2792-2798. doi: 10.1063/1.858741