不同初始磁场对激波冲击R22重气柱过程影响的数值模拟

林震亚 郭则庆 张焕好 陈志华 刘迎

林震亚, 郭则庆, 张焕好, 陈志华, 刘迎. 不同初始磁场对激波冲击R22重气柱过程影响的数值模拟[J]. 爆炸与冲击, 2018, 38(2): 409-418. doi: 10.11883/bzycj-2016-0256
引用本文: 林震亚, 郭则庆, 张焕好, 陈志华, 刘迎. 不同初始磁场对激波冲击R22重气柱过程影响的数值模拟[J]. 爆炸与冲击, 2018, 38(2): 409-418. doi: 10.11883/bzycj-2016-0256
LIN Zhenya, GUO Zeqing, ZHANG Huanhao, CHEN Zhihua, LIU Ying. Numerical simulation of influence of different initial magnetic fields on process of shock wave shocking R22 heavy gas column[J]. Explosion And Shock Waves, 2018, 38(2): 409-418. doi: 10.11883/bzycj-2016-0256
Citation: LIN Zhenya, GUO Zeqing, ZHANG Huanhao, CHEN Zhihua, LIU Ying. Numerical simulation of influence of different initial magnetic fields on process of shock wave shocking R22 heavy gas column[J]. Explosion And Shock Waves, 2018, 38(2): 409-418. doi: 10.11883/bzycj-2016-0256

不同初始磁场对激波冲击R22重气柱过程影响的数值模拟

doi: 10.11883/bzycj-2016-0256
基金项目: 

国家自然科学基金项目 11502117

中国博士后科学基金项目 2015M571757

详细信息
    作者简介:

    林震亚(1990—),男,博士

    通讯作者:

    郭则庆, guozq@njust.edu.cn

  • 中图分类号: O361.3

Numerical simulation of influence of different initial magnetic fields on process of shock wave shocking R22 heavy gas column

  • 摘要: 基于磁流体动力(magneto-hydrodynamic,MHD)方程,采用CTU+CT方法,对在不同初始磁场作用下的平面入射激波与磁化R22重质气柱作用过程进行了数值研究。数值结果清晰地描述了不同初始磁场条件时激波诱导R22气柱界面不稳定性的过程,揭示了磁场控制界面不稳定性的机理。另外,还分析了磁感应强度对界面不稳定性的影响,发现在磁场较小时,涡层附着于界面,但随着磁感应强度的增大,平均涡量随之增大,涡层与界面逐渐分离,最终更好地抑制了界面不稳定性。同时,还发现平均涡度拟能随着磁感应强度的增大而减小,而垂直磁场比平行磁场更能降低平均涡度拟能,因而平均涡度拟能可较好地反映磁场对不稳定性的影响效果。
  • 图  1  计算模型

    Figure  1.  Calculation model

    图  2  激波与R22气柱作用过程中涡量分布及密度纹影图

    Figure  2.  Vorticity distribution and schlieren images of interaction of shock wave and R22 column

    图  3  B=0.01 T时激波与R22气柱作用过程的涡量分布图

    Figure  3.  Vorticity distribution of interaction of shock wave and R22 column at B=0.01 T

    图  4  B=0.05 T时激波与R22气柱作用过程的涡量分布图

    Figure  4.  Vorticity distribution of interaction of shock wave and R22 column at B=0.05 T

    图  5  t=945 μs时不同初始磁场情况下的密度纹影图

    Figure  5.  Density schlieren images with different initial magnetic field at t=945 μs

    图  6  B=0.05 T垂直磁场时磁压力及磁能量分布

    Figure  6.  Graph of magnetic pressure and magnetic energy at B=0.05 T and θ=90°

    图  7  B=0.05 T水平磁场时磁压力及磁能量分布

    Figure  7.  Graph of magnetic pressure and magnetic energy at B=0.05 T and θ=0°

    表  1  流场平均涡量

    Table  1.   Average vorticity

    初始条件 Ω/s-1
    B/T θ/(°) 85 μs 165 μs 200 μs 250 μs 450 μs 945 μs
    0 - 55.79 121.1 145.5 142.1 190.7 255.1
    0.01 90 56.21 117.0 140.3 131.8 155.5 205.3
    0.01 0 56.14 116.9 139.9 132.8 169.9 270.0
    0.05 90 68.44 132.5 156.5 169.8 216.4 289.9
    0.05 0 60.65 123.2 147.0 169.5 247.4 354.5
    下载: 导出CSV

    表  2  流场平均涡度拟能

    Table  2.   Average enstrophy

    初始条件 Ω2/s-2
    B/T θ/(°) 85 μs 165 μs 200 μs 250 μs 450 μs 945 μs
    0 - 6.604×106 1.332×107 1.557×107 1.116×107 1.153×107 1.135×107
    0.01 90 1.899×106 3.527×106 4.694×106 3.144×106 3.334×106 4.533×106
    0.01 0 4.275×106 7.098×106 7.332×106 6.285×106 7.132×106 9.524×106
    0.05 90 1.714×106 2.679×106 3.586×106 2.932×106 3.268×106 4.572×106
    0.05 0 3.343×106 4.817×106 5.036×106 5.413×106 6.965×106 9.723×106
    下载: 导出CSV
  • [1] BROUILLETTE M. The Richtmyer-Meshkov instability[J]. Annual Review of Fluid Mechanics, 2002, 34:445-468. doi: 10.1146/annurev.fluid.34.090101.162238
    [2] HAAS J F, STURTEVANT B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities[J]. Journal of Fluid Mechanics, 1987, 181:41-76. doi: 10.1017/S0022112087002003
    [3] TOMKINS C, KUMAR S, ORLICZ G, et al. An experimental investigation of mixing mechanisms in shock-accelerated flow[J]. Journal of Fluid Mechanics, 2008, 611:131-150. http://adsabs.harvard.edu/abs/2008JFM...611..131T
    [4] 范美如, 翟志刚, 司廷, 等.激波与不同形状界面作用的数值模拟[J].中国科学:物理学、力学、天文学, 2011, 41(7):862-869. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jgxk201107009&dbname=CJFD&dbcode=CJFQ

    FAN Meiru, ZHAI Zhigang, SI Ting, et al. Numerical simulation of interaction with different shape accelerated by a planar shock[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2011, 41(7):862-869. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jgxk201107009&dbname=CJFD&dbcode=CJFQ
    [5] FAN M R, ZHAI Z G, SI T, et al. Numerical study on the evolution of the shock-accelerated SF 6 interface: Influence of the interface shape[J]. Science China: Physics, Mechanics & Astronomy, 2012, 55(2):284-296. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jgxg201202016&dbname=CJFD&dbcode=CJFQ
    [6] 王显圣, 司廷, 罗喜胜, 等.反射激波冲击重气柱的RM不稳定性数值研究[J].力学学报, 2012, 44(4):664-672. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=lxxb201204003&dbname=CJFD&dbcode=CJFQ

    WANG Xiansheng, SI Ting, LUO Xisheng, et al. Numerical study on the RM instability of a heavy-gas cylinder interacted with reshock[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(4):664-672. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=lxxb201204003&dbname=CJFD&dbcode=CJFQ
    [7] SI T, ZHAI Z, YANG J, et al. Experimental investigation of reshocked spherical gas interfaces[J]. Physics of Fluids, 2012, 24(5):054101. doi: 10.1063/1.4711866
    [8] CHANDRASEKHAR S. Hydrodynamic and hydromagnetic stability[M]. Courier Dover Publications, 2013:441-453.
    [9] WHEATLEY V, PULLIN D I, SAMTANEY R. Stability of an impulsively accelerated density interface in magnetohydrodynamics[J]. Physical Review Letters, 2005, 95(12):125002. doi: 10.1103/PhysRevLett.95.125002
    [10] WHEATLEY V, SAMTANEY R, PULLIN D I. The magnetohydrodynamic Richtmyer-Meshkov instability: The transverse field case[C]//The 18th Australasian Fluid Mechanics Conference. Australasian Fluid Mechanics Society, 2012.
    [11] CAO J, WU Z, REN H, et al. Effects of shear flow and transverse magnetic field on Richtmyer-Meshkov instability[J]. Physics of Plasmas, 2008, 15(4):042102. doi: 10.1063/1.2842367
    [12] KHAN M, MANDAL L, BANERJEE R, et al. Development of Richtmyer-Meshkov and Rayleigh-Taylor instability in the presence of magnetic field[J]. Nuclear Instruments and Methods in Physics Research Section: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 653(1):2-6. doi: 10.1016/j.nima.2011.02.086
    [13] SHIN M S, STONE J M, SNYDER G F. The magnetohydrodynamics of shock-cloud interaction in three dimensions[J]. The Astrophysical Journal, 2008, 680(1):336-348. doi: 10.1086/529160
    [14] 李源, 罗喜胜.黏性、表面张力和磁场对Rayleigh-Taylor不稳定性气泡演化影响的理论分析[J].物理学报, 2014, 63(8):277-285. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=wlxb201408037&dbname=CJFD&dbcode=CJFQ

    LI Yuan, LUO Xisheng. Theoretical analysis of effects of viscosity, surface tension, and magnetic field on the bubble evolution of Rayleigh-Taylor instability[J]. Acta Physica Sinica, 2014, 63(8):277-285. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=wlxb201408037&dbname=CJFD&dbcode=CJFQ
    [15] 林震亚, 张焕好, 陈志华, 等.磁场对激波冲击R22重气柱作用过程影响的数值模拟[J].爆炸与冲击, 2017, 37(4):748-758. http://www.bzycj.cn/CN/abstract/abstract9778.shtml

    LIN Zhenya, ZHANG Huanhao, CHEN Zhihua, et al. Influence of magnetic field on interaction of shock wave with R22 heavy gas column[J]. Explosion and Shock Waves, 2017, 37(4):748-758. http://www.bzycj.cn/CN/abstract/abstract9778.shtml
    [16] SALTZMAN J. An unsplit 3D upwind method for hyperbolic conservation laws[J]. Journal of Computational Physics, 1994, 115(1):153-168. doi: 10.1006/jcph.1994.1184
    [17] GARDINER T A, STONE J M. An unsplit Godunov method for ideal MHD via constrained transport in three dimensions[J]. Journal of Computational Physics, 2008, 227(8):4123-4141. doi: 10.1016/j.jcp.2007.12.017
    [18] 沙莎, 陈志华, 薛大文.激波冲击R22重气柱所导致的射流与混合研究[J].物理学报, 2013, 62(14):291-300. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=wlxb201314045&dbname=CJFD&dbcode=CJFQ

    SHA Sha, CHEN Zhihua, XUE Dawen. The generation of jet and mixing induced by the interaction of shock wave with R22 cylinder[J]. Acta Physica Sinica, 2013, 62(14):291-300. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=wlxb201314045&dbname=CJFD&dbcode=CJFQ
    [19] HAAS J F, STURTEVANT B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities[J]. Journal of Fluid Mechanics, 1987, 181:41-76. doi: 10.1017/S0022112087002003
    [20] HERRING J R, KERR R M. Development of enstrophy and spectra in numerical turbulence[J]. Physics of Fluids: Fluid Dynamics, 1993, 5(11):2792-2798. doi: 10.1063/1.858741
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  5122
  • HTML全文浏览量:  2085
  • PDF下载量:  222
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-24
  • 修回日期:  2017-02-09
  • 刊出日期:  2018-03-25

目录

    /

    返回文章
    返回