Influence of rotation on damage power of an explosively-formed rod-like penetrator
-
摘要: 为进一步提高周向多爆炸成型侵彻体战斗部的毁伤效能,结合数值模拟方法,设计了一种爆炸成型杆式侵彻体战斗部。基于复合装药的爆轰加载控制方式,使得药型罩成型为密实的杆式侵彻体,通过调整半预制药型罩的斜置角度,对毁伤元的旋转速度施加控制,进而提高其空中飞行姿态的稳定性,提高毁伤元的毁伤威力。对不同斜置角度的战斗部原理样机进行了静爆实验,实验结果与模拟结果的对比表明,半预制药型罩斜置角度为1.5°时,爆炸成型杆式侵彻体的着靶姿态最好,对45钢靶板侵彻深度最大。通过药型罩斜置,在保证杆式侵彻体成型质量的同时,可以有效提高侵彻体的侵彻威力。Abstract: In order to further improve the damage efficiency of a multiple explosively-formed penetrator warhead, the multiple explosively-formed rod-like penetrator warheads were designed by composite charge and were researched by numerical simulation. Based on the detonation loading control method by composite charge, the liners can be formed to be dense rod-like penetrators. By adjusting the oblique angle of a half-prefabricated liner, the rotation speed of the penetrator is controlled and the stability of its flight attitude in the air is controlled. And then, the damage power of the penetrator was improved. The principle prototypes of the warheads with different oblique notching angles were designed and the static blasting experiments were performed. The comparison between the experimental results and the numerical simulation ones displays that the impact attitude of the explosively-formed rod-like penetrator is the best and its penetration into the steel-45 plate is the deepest, when the oblique angle is 1.5°. At the base of ensuring the formed quality, the penetration power of the rod-like penetrator can be improved significantly by obliquely placing the liner.
-
Key words:
- warhead /
- liner /
- composite charge /
- rod-like penetrator /
- flight stability
-
表 1 自旋转的模拟结果和理论计算结果
Table 1. Simulation result and theoretical calculation result of rotation
倾斜角度/(°) 模拟切线速度/(m·s-1) 模拟角速度/(rad·s-1) 理论切线速度/(m·s-1) 理论角速度/(rad·s-1) 1 47.3 0.81×103 42.5 0.79×103 2 94.6 1.62×103 85.5 1.49×103 -
[1] CARDOSO D, TEIXEIRA-DIAS F. Modelling the formation of explosively formed projectiles (EFP)[J]. International Journal of Impact Engineering, 2016, 93:116-127. doi: 10.1016/j.ijimpeng.2016.02.014 [2] 相升海, 徐文龙, 张建, 等.刻槽式MEFP的成型及侵彻钢靶模式[J].爆炸与冲击, 2015, 35(1):135-139. doi: 10.11883/1001-1455(2015)01-0135-05XIANG Shenghai, XU Wenlong, ZHANG Jian, et al. Groove type MEFP formation and penetrating steel target's pattern[J]. Explosion and Shock Waves, 2015, 35(1):135-139. doi: 10.11883/1001-1455(2015)01-0135-05 [3] 赵长啸, 龙源, 余道强, 等, 切割式多爆炸成形弹丸成形及对钢靶的穿甲效应[J].爆炸与冲击, 2013, 33(2):186-193. doi: 10.11883/1001-1455(2013)02-0186-08ZHAO Changxiao, LONG Yuan, YU Daoqiang, et al. Formation of incised multiple explosively-formed projectiles and their armor-piercing effect against steel target[J]. Explosion and Shock Waves, 2013, 33(2):186-193. doi: 10.11883/1001-1455(2013)02-0186-08 [4] 吴成, 赵士津, 李申, 等.定向战斗部复合装药爆轰的超压区域及破片增益特性的机理分析[J].北京理工大学学报, 2015, 35(8):777-782. http://www.cnki.com.cn/Article/CJFDTotal-BJLG201508002.htmWU Cheng, ZHAO Shijin, LI Shen, et al. Study on the features of fragments gains and super-pressure field in a directed warhead with double charge lamination[J]. Transactions of Beijing Institute of Technology, 2015, 35(8):777-782. http://www.cnki.com.cn/Article/CJFDTotal-BJLG201508002.htm [5] 周涛, 程淑杰, 王辉, 等.DNTF基含铝炸药复合装药的驱动特性[J].火炸药学报, 2015, 38(5):46-50. doi: 10.14077/j.issn.1007-7812.2015.05.009.htmlZHOU Tao, CHENG Shujie, WANG Hui, et al. Research on driving characteristic for compound charge of DNTF-based aluminized explosive[J]. Chinese Journal of Explosives & Propellants, 2015, 38(5):46-50. doi: 10.14077/j.issn.1007-7812.2015.05.009.html [6] 王儒策, 赵国志.弹丸终点效应[M].北京:北京理工大学出版社, 1993. [7] 张维, 郝秀平.基于旋转稳定和尾翼稳定的弹丸飞行稳定性研究[J].装备制造技术, 2014(1):155-157. http://www.cqvip.com/QK/93900A/201401/48564676.htmlZHANG Wei, HAO Xiuping. Analysis of projectile flight stability based on empennage and rotation stability[J]. Equipment Manufacturing Technology, 2014(1):155-157. http://www.cqvip.com/QK/93900A/201401/48564676.html [8] 孙传杰, 路中华, 卢永刚, 等.可控旋转离散杆空间运动分析[J].爆炸与冲击, 2008, 28(4):378-383. doi: 10.11883/1001-1455(2008)04-0378-06SUN Chuanjie, LU Zhonghua, LU Yonggang, et al. Motion analysis of a controllable rotation discrete rod[J]. Explosion and Shock Waves, 2008, 28(4):378-383. doi: 10.11883/1001-1455(2008)04-0378-06