基于SPH方法铁路车轴遭受道砟撞击的数值模拟

敬霖 韩亮亮 周彭滔

敬霖, 韩亮亮, 周彭滔. 基于SPH方法铁路车轴遭受道砟撞击的数值模拟[J]. 爆炸与冲击, 2018, 38(3): 603-615. doi: 10.11883/bzycj-2016-0265
引用本文: 敬霖, 韩亮亮, 周彭滔. 基于SPH方法铁路车轴遭受道砟撞击的数值模拟[J]. 爆炸与冲击, 2018, 38(3): 603-615. doi: 10.11883/bzycj-2016-0265
JING Lin, HAN Liangliang, ZHOU Pengtao. A numerical simulation of railway axles subjected to ballast impact based on SPH method[J]. Explosion And Shock Waves, 2018, 38(3): 603-615. doi: 10.11883/bzycj-2016-0265
Citation: JING Lin, HAN Liangliang, ZHOU Pengtao. A numerical simulation of railway axles subjected to ballast impact based on SPH method[J]. Explosion And Shock Waves, 2018, 38(3): 603-615. doi: 10.11883/bzycj-2016-0265

基于SPH方法铁路车轴遭受道砟撞击的数值模拟

doi: 10.11883/bzycj-2016-0265
基金项目: 

国家自然科学基金项目 51475392

国家自然科学基金项目 11772275

西南交通大学引进人才科研启动项目 2682015RC09

牵引动力国家重点实验室自主研究课题项目 2015TPL_T02

详细信息
    作者简介:

    敬霖(1984-), 男, 博士, 副研究员, jinglin@home.swjtu.edu.cn

  • 中图分类号: O347.1;U271.91

A numerical simulation of railway axles subjected to ballast impact based on SPH method

  • 摘要: 基于非线性有限元软件LS-DYNA及其提供的SPH(smoothed particle hydrodynamics)算法,建立了高速铁路车轴遭受道砟撞击的计算分析模型,考察了不同撞击速度、道砟形状和尺寸,以及撞击角度工况下车轴的动态响应。给出了撞击力和车轴受撞击处变形的响应特征,分析了车轴最大残余变形与撞击力峰值之间的关系,探讨了不同工况下车轴的撞击损伤规律。结果表明,撞击力峰值和车轴变形(包括瞬态变形和残余变形)均随着撞击速度、道砟直径和撞击角度的增大而增大,车轴最大残余变形与撞击力峰值呈近似线性增大关系,车轴的量纲一压痕深度(残余变形)与吸收冲击能平方根成线性关系。
  • 图  1  车轴的有限元模型

    Figure  1.  The finite element model of the axle

    图  2  道砟实物和SPH模型

    Figure  2.  Photo and computational models of the ballast

    3a  t=0 ms时道砟撞击车轴的典型等效应力云图

    3a.  Typical effective stress contours of the axle subjected to ballast impact at t=0 ms

    3b  t=0.15 ms时道砟撞击车轴的典型等效应力云图

    3b.  Typical effective stress contours of the axle subjected to ballast impact at t=0.15 ms

    3c  t =0.20 ms时道砟撞击车轴的典型等效应力云图

    3c.  Typical effective stress contours of the axle subjected to ballast impact t =0.20 ms

    3d  t =0.27 ms时道砟撞击车轴的典型等效应力云图

    3d.  Typical effective stress contours of the axle subjected to ballast impact at t =0.27 ms

    3e  t =0.40 ms时道砟撞击车轴的典型等效应力云图

    3e.  Typical effective stress contours of the axle subjected to ballast impact at t =0.40 ms

    3f  t =0.60 ms时道砟撞击车轴的典型等效应力云图

    3f.  Typical effective stress contours of the axle subjected to ballast impact at t =0.60 ms

    图  4  不同速度下正四面体道砟撞击车轴时的力与变形响应时程曲线

    Figure  4.  Force and displacement history curves of the axle subjected to the regular-tetrahedron-ballast impact at different velocities

    图  5  不同速度下球形道砟撞击车轴时的力与变形响应时程曲线

    Figure  5.  Force and displacement history curves of the axle subjected to the spherical ballast impact at different velocities

    图  6  不同尺寸道砟以400 km/h的速度撞击车轴时的力与变形响应时程曲线

    Figure  6.  Force and displacement history curves of the axle subjected to the impact of the ballastswith different sizes at 400 km/h

    7a  正四面体道砟以100 km/h的速度、不同的角度撞击车轴时的力和位移响应曲线

    7a.  Force and displacement response history curves of the axle subjected to the regular-tetrahedron ballast impact with different angles at 100 km/h

    7b  正四面体道砟以200 km/h的速度、不同的角度撞击车轴时的力和位移响应曲线

    7b.  Force and displacement response history curves of the axle subjected to the regular-tetrahedron ballast impact with different angles at 200 km/h

    7c  正四面体道砟以300 km/h的速度、不同的角度撞击车轴时的力和位移响应曲线

    7c.  Force and displacement response history curves of the axle subjected to the regular-tetrahedron ballast impact with different angles at 300 km/h

    7d  正四面体道砟以400 km/h的速度、不同的角度撞击车轴时的力和位移响应曲线

    7d.  Force and displacement response history curves of the axle subjected to the regular-tetrahedron ballast impact with different angles at 400 km/h

    图  8  球形道砟以不同初始速度和角度撞击车轴时的撞击力和位移响应时程曲线

    Figure  8.  Force and displacement response history curves of the axle subjected to the spherical ballast impact with different angles at different impact velocities

    图  9  车轴遭受道砟撞击残余变形与撞击力峰值的关系

    Figure  9.  Relationship between peak impact force and residual deformation of the axle subjected to ballast impact

    图  10  不同撞击角度下车轴遭受道砟撞击残余变形与撞击力峰值的关系

    Figure  10.  Relationship between peak impact force and residual deformation of the axle subjected to ballast impact at different angles

    图  11  车轴量纲一压痕深度与吸收冲击能平方根之间的关系

    Figure  11.  Relationship between the normalized indentation depth and the square root of impact energy

  • [1] GRAVIER N, VIET J J, LELUAN A. Predicting the life of railway vehicle axles[C]//Proceedings of the 12th International Wheelset Congress. Qingdao, China, 1998: 133-146.
    [2] 周素霞, 谢基龙.高速客车空心轴车轴裂纹扩展特性研究[J].工程力学, 2009, 26(7):232-237. http://www.oalib.com/paper/4187993

    ZHOU Suxia, XIE Jilong. Research of the fatigue crack propagation characteristic on railway hollow axles[J]. Engineering Mechanics, 2009, 26(7):232-237. http://www.oalib.com/paper/4187993
    [3] BERETTA S, GHIDINI A, LOMBARDO F. Fracture mechanisms and scale effects in the fatigue of railway axles[J]. Engineering Fracture Mechanics, 2005, 72:195-208. doi: 10.1016/j.engfracmech.2003.12.011
    [4] OGNJANOVIC M, SIMONOVIC A, RISTIVOJEVIC M, et al. Research of rail traction shafts and axles fractures towards impact of service conditions and fatigue damage accumulation[J]. Engineering Failure Analysis, 2010, 17:1560-1571. doi: 10.1016/j.engfailanal.2010.06.007
    [5] 刘志明, 孙守光, 缪龙秀.车轴裂纹扩展寿命的分析与计算方法[J].中国铁道科学, 2008, 29(3):89-94. https://www.wenkuxiazai.com/doc/22d28c9ca0116c175f0e481c.html

    LIU Zhiming, SUN Shouguang, MIAO Longxiu. Analysis and calculation method of axle crack growth life[J]. China Railway Science, 2008, 29(3):89-94. https://www.wenkuxiazai.com/doc/22d28c9ca0116c175f0e481c.html
    [6] GOMEZ M J, CASTEJON C, GARCIA-PRADA J C. New stopping criteria for crack detection during fatigue tests of railway axles[J]. Engineering Failure Analysis, 2015, 56:530-537. doi: 10.1016/j.engfailanal.2014.10.018
    [7] MCQUAID J, JONES N. A re-examination of Andrews' research on impact resistance of railway axles[J]. International Journal of Impact Engineering, 1999, 22:727-738. doi: 10.1016/S0734-743X(99)00021-4
    [8] ANDREWS T. Effect of temperature on the strength of wrought iron railway axles:Part 2[J]. Minutes of the Proceedings, 1888, 94:180-209. doi: 10.1080/15583050902802337?scroll=top&needAccess=true&journalCode=uarc20
    [9] 周素霞. 高速列车空心车轴损伤容限理论与方法研究[D]. 北京: 北京交通大学, 2009: 71-80.
    [10] 张俊清, 周素霞, 谢基龙.缺口对车轴钢疲劳性能的影响[J].北京交通大学学报, 2010, 34(4):133-135. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bfjtdxxb201004027

    ZHANG Junqing, ZHOU Suxia, XIE Jilong. Experimental research on the effects of notches on the fatigue behavior of axle steel[J]. Journal of Beijing Jiaotong University, 2010, 34(4):133-135. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bfjtdxxb201004027
    [11] 刘军, 李玉龙, 刘元镛.基于SPH方法的叶片鸟撞数值模拟研究[J].振动与冲击, 2008, 27(9):91-93. https://www.wenkuxiazai.com/doc/f3679f0fa300a6c30c229f26.html

    LIU Jun, LI Yulong, LIU Yuanyong. Numerical simulation study of bird-impact on a blade using SPH method[J]. Journal of Vibration and Shock, 2008, 27(9):91-93. https://www.wenkuxiazai.com/doc/f3679f0fa300a6c30c229f26.html
    [12] 李志强, 韩强, 杨建林, 等.基于SPH方法的鸟撞飞机风挡的数值模拟[J].华南理工大学学报, 2009, 37(12):147-150. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnlgdxxb200912028

    LI Zhiqiang, HAN Qiang, YANG Jianlin, et al. SPH-based numerical simulation of aircraft windshield under bird impact[J]. Journal of South China University of Technology, 2009, 37(12):147-150. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnlgdxxb200912028
    [13] 刘军, 李玉龙, 徐绯.基于PAM-CRASH的鸟撞飞机风挡动响应分析[J].爆炸与冲击, 2009, 29(1):80-84. doi: 10.11883/1001-1455(2009)01-0080-05

    LIU Jun, LI Yulong, XU Fei. Dynamic response analysis of bird-impact aircraft windshields based on PAM-CRASH[J]. Explosion and Shock Waves, 2009, 29(1):80-84. doi: 10.11883/1001-1455(2009)01-0080-05
    [14] LUCY L B. A numerical approach to the testing of the fission hypothesis[J]. Astronomical Journal, 1977, 82(12):1013-1024. http://www.oalib.com/references/14108206
    [15] 孙晓旺, 章杰, 王肖钧, 等.应力波数值计算中的SPH方法[J].爆炸与冲击, 2017, 37(1):10-14. doi: 10.11883/1001-1455(2017)01-0010-05

    SUN Xiaowang, ZHANG Jie, WANG Xiaojun, et al. Application of SPH in stress wave simulation[J]. Explosion and Shock Waves, 2017, 37(1):10-14. doi: 10.11883/1001-1455(2017)01-0010-05
    [16] 铁道部运输局铁道科学研究院金属及化学研究所.铁路货车轮轴典型伤损图册[M].北京:中国铁道出版社, 2006:64-66.
    [17] 张徐, 赵春发, 翟婉明.铁路碎石道砟静态压碎行为数值模拟[J].西南交通大学学报, 2015, 50(1):137-143. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xnjtdxxb201501020

    ZHANG Xu, ZHAO Chunfa, ZHAI Wanming. Numerical analysis of static crushed behavior of railway ballast[J]. Journal of Southwest Jiaotong University, 2015, 50(1):137-143. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xnjtdxxb201501020
    [18] 王筑生, 梁益龙, 吴少斌, 等.大截面EA4T车轴钢回火工艺对组织和性能的影响[J].材料热处理学报, 2012, 33(5):48-52. http://d.wanfangdata.com.cn/Periodical_jsrclxb201205011.aspx

    WANG Zhusheng, LIANG Yilong, WU Shaobin, et al. Effect of temperature process on microstructure and properties of EA4T axle steel[J]. Transactions of Materials and Heat Treatment, 2012, 33(5):48-52. http://d.wanfangdata.com.cn/Periodical_jsrclxb201205011.aspx
    [19] AI H A, AHRENS T J. Simulation of dynamic response of granite:A numerical approach of shock-induced damage beneath impact craters[J]. International Journal of Impact Engineering, 2006, 33(1):1-10. https://www.sciencedirect.com/science/article/pii/S0734743X06001710
    [20] LI Jun, WU Chengqing, HAO Hong. Investigation of ultra-high performance concrete slab and normal strength concrete slab under contact explosion[J]. Engineering Structures, 2015, 102:395-408. doi: 10.1016/j.engstruct.2015.08.032
    [21] HALLQUIST J O. LS-DYNA theory manual:Version 971[M]. Livermore:Livermore Software Technology Corporation, 2007:142-143.
  • 加载中
图(19)
计量
  • 文章访问数:  5173
  • HTML全文浏览量:  1936
  • PDF下载量:  203
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-26
  • 修回日期:  2017-03-28
  • 刊出日期:  2018-05-25

目录

    /

    返回文章
    返回