Dynamic responses of aramid honeycomb sandwich panels loaded by an electric gun
-
摘要: 研究了方形钛-芳纶蜂窝夹芯板在电炮驱动的高速聚酯飞片撞击加载下的动力响应,给出了面板和蜂窝芯层在不同冲击速度下的变形及失效模式。采用VISAR(velocity interferometer system for any reflector)测速技术测量了后面板中心点的速度时程,分析了芳纶蜂窝夹芯板的动态响应过程,讨论了冲击速度对夹芯板动力响应和抗冲击能力的影响。研究结果表明,低波阻抗的芳纶蜂窝破碎行为阻断了应力波向后面板的传播途径,破碎的蜂窝和塑形大变形的前面板吸收了高速冲击的大部分能量,充分发挥了钛合金的高强度和芳纶蜂窝的缓冲吸能特性,提高了夹芯板整体的防护能力。Abstract: We studied the dynamically loaded quadrate sandwich plates constructed from titanium alloy plates with an aramid honeycomb core using high-velocity Mylar flyers produced by an electric gun, and classified systematically the deformation/failure modes of the plates and the honey comb core. Applying the velocity interferometer system for any reflector (VISAR) in measuring the velocity history at the midpoint of the back plates, we analyzed the dynamic response processes of the sandwich panels and identified the influences of the impact velocity on the dynamic response and the impact resistance of the sandwich panels. The results indicate that the stress pulses were blocked by the aramid honeycombs (a low wave impedance material), which led to the deformed front plates that absorbed most of the impact energy, thereby improving effectively the impact resistance capability of the general sandwich panels owing to the high strength of the titanium alloy and the energy absorption of the aramid honeycomb.
-
Key words:
- dynamic response /
- impulse loading /
- sandwich plate /
- aramid honeycomb /
- Mylar flyer /
- electric gun
-
表 1 实验得到的冲量和失效模式
Table 1. Impulses and deformation/failure modes obtained in experiments
样品 vf/(km·s-1) I/(N·s) 前面板的失效模式 A1 1.78 0.881 层裂模式Ⅰ A2 2.00 0.990 层裂模式Ⅱ A3 2.33 1.153 层裂模式Ⅱ A4 2.74 1.356 层裂冲塞模式 -
[1] 王曙中.芳纶浆粕和芳纶纸的发展概况[J].高科技纤维与应用, 2009, 34(4):15-18. doi: 10.3969/j.issn.1007-9815.2009.04.003WANG Shuzhong. The state of development of PPTA-pulp and aramid paper[J]. Hi-Tech Fiber & Application, 2009, 34(4):15-18. doi: 10.3969/j.issn.1007-9815.2009.04.003 [2] ZHU Feng, ZHAO Longmao, LU Guoxing, et al. Deformation and failure of blast-loaded metallic sandwich panels: Experimental investigations[J]. International Journal of Impact Engineering, 2008, 35(8):937-951. doi: 10.1016/j.ijimpeng.2007.11.003 [3] NURICK G N, LANGDON G S, CHI Y, et al. Behaviour of sandwich panels subjected to intense air blast: Part 1: Experiments[J]. Composite Structures, 2009, 91(4):433-441. doi: 10.1016/j.compstruct.2009.04.009 [4] AVACHAT S, ZHOU M. Effect of facesheet thickness on dynamic response of composite sandwich plates to underwater impulsive loading[J]. Experimental Mechanics, 2012, 52(1):83-93. doi: 10.1007/s11340-011-9538-4 [5] FAN Zhiqiang, LIU Yingbin, XU Peng. Blast resistance of metallic sandwich panels subjected to proximity underwater explosion[J]. International Journal of Impact Engineering, 2016, 93:128-135. doi: 10.1016/j.ijimpeng.2016.03.001 [6] GOLDSMITH W, SACKMAN J. An experimental study of energy absorption in impact on sandwich plates[J]. Économie Rurale, 2013, 204(3):58-59. http://www.researchgate.net/publication/245148666_An_experimental_study_of_energy_absorption_in_impact_on_sandwich_plates [7] HOU Weihong, ZHU Feng, LU Guoxing, et al. Ballistic impact experiments of metallic sandwich panels with aluminium foam core[J]. International Journal of Impact Engineering, 2010, 37(10):1045-1055. doi: 10.1016/j.ijimpeng.2010.03.006 [8] YAHAYA M A, RUAN D, LU G, et al. Response of aluminium honeycomb sandwich panels subjected to foam projectile impact: An experimental study[J]. International Journal of Impact Engineering, 2015, 75:100-109. doi: 10.1016/j.ijimpeng.2014.07.019 [9] DESHPANDE V S, FLECK N A. High strain rate compressive behaviour of aluminium alloy foams[J]. International Journal of Impact Engineering, 2000, 24(3):277-298. doi: 10.1016/S0734-743X(99)00153-0 [10] MUKAI T, KANAHASHI H, MIYOSHI T, et al. Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading[J]. Scripta Materialia, 1999, 40(8):921-927. doi: 10.1016/S1359-6462(99)00038-X [11] CHAU H H, DITTBENNER G, HOFER W W, et al. Electric gun: A versatile tool for high-pressure shock-wave research[J]. Review of Scientific Instruments, 1980, 51(12):1676-1681. doi: 10.1063/1.1136155 [12] 马春花, 刘玉.国产芳纶纸蜂窝性能的研究[J].高科技纤维与应用, 2013, 38(3):20-24. http://www.cnki.com.cn/Article/CJFDTotal-GKJQ201303004.htmMA Chunhua, LIU Yu. Study on the properties and applications of China's domestic aramid paper honeycomb[J]. Hi-Tech Fiber & Application, 2013, 38(3):20-24. http://www.cnki.com.cn/Article/CJFDTotal-GKJQ201303004.htm [13] 赵剑衡, 孙承纬, 唐小松, 等.高效能电炮实验装置的研制[J].实验力学, 2006, 21(3):369-375. http://d.old.wanfangdata.com.cn/Periodical/sylx200603018ZHAO Jianheng, SUN Chengwei, TANG Xiaosong, et al. Development of electric gun with high performance[J]. Journal of Experimental Mechanics, 2006, 21(3):369-375. http://d.old.wanfangdata.com.cn/Periodical/sylx200603018 [14] 王礼立.应力波基础[M].北京:国防工业出版社, 1985:60-64.