Mechanism of early-stage drop deformation in shock induced flow at limited Weber numbers
-
摘要: 以实验结合数值模拟与理论分析的方法,研究韦伯数在2 100~2 700区间内,不同组合流动参数对液滴破碎初期变形的影响与作用机制。实验中通过高速摄影捕捉到一系列具有明显差异的液滴变形模态,表明在相近韦伯数下液滴的初期变形仍受到气流速度、密度等具体流动参数的显著影响。以刚性球体替代液滴进行外流数值模拟,利用球体表面气动力分布推算出的液滴表面变形趋势与实际变形形态吻合,表明液滴的初期变形特征与外流流动分离和涡特征具有一致性。对流场和理论变形数据的分析显示,流动分离发展阶段和稳定阶段对液滴作用力以及它们所诱导的液滴变形特征存在很大差异;分离发展与液滴变形过程的特征时间之比可由气液密度比的平方根表示,它决定了液滴早期变形的基本形态。分离发展阶段所占时间比例越高,即实验中气液密度比越高,则液滴更倾向于发展出单个显著的环形突起,反之则趋于形成多个相对均衡的突起。Abstract: Early-stage deformation of water drops under Weber numbers ranging from 2 100 to 2 700 is investigated by experimental, numerical and theoretical methods, to reveal the influences of primary flow parameters on drop deformation as well as the mechanism behind them. Images of the drop deformation with noteworthy differences under different test conditions are captured with high-speed photography technique, demonstrating that though the Weber numbers are similar, drop deformation can be largely affected by the involved primary flow parameters, such as gas velocity, gas density and drop diameter. By substituting the liquid drop with a rigid sphere body, the gas flow field is numerically simulated, and the aerodynamic forces acting on sphere surface are distilled based on which the drop deformation is theoretically computed. The results show a good agreement between the theoretical and experimental deformation trends. The early-stage deformation of the drop is found to be in coherence with the flow separation and vortex distribution characteristics of the gas flow. Evolution of the gas flow field can be divided into a transient separation developing period and a following globally steady period. The pressure distribution exerted by the gas flow and the radial acceleration induced by it exhibit large differences in the two periods. The characteristic time of the separation development relative to the drop deformation, which can be represented by the square root of gas-liquid density ratio, is found to be a dominant parameter determining the drop deformation pattern in early stage of aero-breakup. A higher gas density leads to a higher occupation of the separation developing period in the whole drop deformation process, and the drop tends to develop a single ridge on its rear surface; on the contrary, multiple ridges with similar amplitude are more likely to happen when the gas density is lower, reflecting the characteristics of the outer flow in the globally stable period.
-
Key words:
- drop /
- aero-breakup /
- early-stage deformation /
- high-speed photography /
- drop rear-surface
-
表 1 实验参数
Table 1. Experimental parameters
Cases d0/mm Mas ug /(m·s-1) ρg /(kg·m-3) We Re Oh ts, 0/μs td, 0/μs κ Ⅰ 3.76 1.37 186.2 1.312 2 370 4.2×104 1.9×10-3 20.2 557.7 3.62×10-2 Ⅱ 2.66 1.89 396.3 0.460 2 670 1.9×104 2.3×10-3 6.7 312.9 2.14×10-2 Ⅲ 2.82 1.91 399.6 0.346 2 142 1.5×104 2.2×10-3 7.1 379.5 1.87×10-2 Ⅳ 3.04 2.36 560.3 0.162 2 118 8.9×103 2.1×10-3 5.4 426.9 1.26×10-2 Ⅴ 2.61 2.60 641.0 0.164 2 421 8.3×103 2.3×10-3 4.1 317.7 1.29×10-2 -
[1] 费立森. 煤油在冷态超声速气流中喷射和雾化现象的初步研究[D]. 合肥: 中国科学技术大学, 2007: 1-12. http://www.xny365.com/xueshu/article-368279.html [2] 万云霞, 黄勇, 朱英.液体圆柱射流破碎过程的实验[J].航空动力学报, 2008, 23(2):208-214. http://www.doc88.com/p-4502158177738.htmlWAN Yunxia, HUANG Yong, ZHU Ying. Experiment on the breakup process of free round liquid jet[J]. Journal of Aerospace Power, 2008, 23(2):208-214. http://www.doc88.com/p-4502158177738.html [3] THEOFANOUS T G, LI G J, DINH T N. Aerobreakup in rarefied supersonic gas flows[J]. Journal of Fluids Engineering, 2004, 126(4):516-527. doi: 10.1115/1.1777234 [4] THEOFANOUS T G, LI G J. On the physics of aerobreakup[J]. Physics of Fluids, 2008, 20(5):052103. doi: 10.1063/1.2907989 [5] THEOFANOUS T G, MITKIN V V, NG C L, et al. The physics of aerobreakup:Ⅱ[J]. Physics of Fluids, 2012, 24(2):022104. doi: 10.1063/1.3680867 [6] THEOFANOUS T G. Aerobreakup of Newtonian and viscoelastic liquids[J]. Annual Review of Fluid Mechanics, 2011, 43:661-690. doi: 10.1146/annurev-fluid-122109-160638 [7] CHANG C H, DENG X, THEOFANOUS T G. Direct numerical simulation of interfacial instabilities:A consistent, conservative, all-speed, sharp-interface method[J]. Journal of Computational Physics, 2013, 242:946-990. doi: 10.1016/j.jcp.2013.01.014 [8] JOSEPH D D, BELANGER J, BEAVERS G S. Breakup of a liquid drop suddenly exposed to a high-speed airstream[J]. International Journal of Multiphase Flow, 1999, 25(6):1263-1303. [9] PILCH M, ERDMAN C A. Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop[J]. International Journal of Multiphase Flow, 1987, 13(6):741-757. doi: 10.1016/0301-9322(87)90063-2 [10] WIERZBA A, TAKAYAMA K. Experimental investigation of the aerodynamic breakup of liquid drops[J]. AIAA Journal, 1988, 26(11):1329-1335. doi: 10.2514/3.10044 [11] 金仁瀚, 刘勇, 朱冬清, 等.初始直径对单液滴破碎特性影响的试验[J].航空动力学报, 2015, 30(10):2401-2409. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201510014JIN Renhan, LIU Yong, ZHU Dongqing, et al. Experiment on impact of initial diameter on breakup characteristic of single droplet[J]. Journal of Aerospace Power, 2015, 30(10):2401-2409. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201510014 [12] 王超, 吴宇, 施红辉, 等.液滴在激波冲击下的破裂过程[J].爆炸与冲击, 2016, 36(1):129-134. doi: 10.11883/1001-1455(2016)01-0129-06WANG Chao, WU Yu, SHI Honghui, et al. Breakup process of a droplet under the impact of a shock wave[J]. Explosion and Shock Waves, 2016, 36(1):129-134. doi: 10.11883/1001-1455(2016)01-0129-06 [13] 易翔宇, 朱雨建, 杨基明.激波诱导高速气流中液滴的初期变形[J].爆炸与冲击, 2017, 37(5):853-862. doi: 10.11883/1001-1455(2017)05-0853-10YI Xiangyu, ZHU Yujian, YANG Jiming. Early-stage deformation of liquid drop in shock induced high-speed flow[J]. Explosion and Shock Waves, 2017, 37(5):853-862. doi: 10.11883/1001-1455(2017)05-0853-10 [14] SUN M, SAITO T, TAKAYAMA K, et al. Unsteady drag on a sphere by shock wave loading[J]. Shock Waves, 2005, 14(1/2):3-9. doi: 10.1007/s00193-004-0235-4.pdf [15] KALITA J C, SEN S. Unsteady separation leading to secondary and tertiary vortex dynamics:The sub-α-and sub-β-phenomena[J]. Journal of Fluid Mechanics, 2013, 730:19-51. doi: 10.1017/jfm.2013.272