相近韦伯数条件下激波波后液滴初期变形的影响机制

易翔宇 朱雨建 杨基明

易翔宇, 朱雨建, 杨基明. 相近韦伯数条件下激波波后液滴初期变形的影响机制[J]. 爆炸与冲击, 2018, 38(3): 525-533. doi: 10.11883/bzycj-2016-0269
引用本文: 易翔宇, 朱雨建, 杨基明. 相近韦伯数条件下激波波后液滴初期变形的影响机制[J]. 爆炸与冲击, 2018, 38(3): 525-533. doi: 10.11883/bzycj-2016-0269
Yi Xiangyu, ZHU Yujian, YANG Jiming. Mechanism of early-stage drop deformation in shock induced flow at limited Weber numbers[J]. Explosion And Shock Waves, 2018, 38(3): 525-533. doi: 10.11883/bzycj-2016-0269
Citation: Yi Xiangyu, ZHU Yujian, YANG Jiming. Mechanism of early-stage drop deformation in shock induced flow at limited Weber numbers[J]. Explosion And Shock Waves, 2018, 38(3): 525-533. doi: 10.11883/bzycj-2016-0269

相近韦伯数条件下激波波后液滴初期变形的影响机制

doi: 10.11883/bzycj-2016-0269
基金项目: 

国家自然科学基金项目 11102204

国家自然科学基金项目 11572313

详细信息
    作者简介:

    易翔宇(1988-), 男, 博士研究生

    通讯作者:

    朱雨建, yujianrd@ustc.edu.cn

  • 中图分类号: O354.5

Mechanism of early-stage drop deformation in shock induced flow at limited Weber numbers

  • 摘要: 以实验结合数值模拟与理论分析的方法,研究韦伯数在2 100~2 700区间内,不同组合流动参数对液滴破碎初期变形的影响与作用机制。实验中通过高速摄影捕捉到一系列具有明显差异的液滴变形模态,表明在相近韦伯数下液滴的初期变形仍受到气流速度、密度等具体流动参数的显著影响。以刚性球体替代液滴进行外流数值模拟,利用球体表面气动力分布推算出的液滴表面变形趋势与实际变形形态吻合,表明液滴的初期变形特征与外流流动分离和涡特征具有一致性。对流场和理论变形数据的分析显示,流动分离发展阶段和稳定阶段对液滴作用力以及它们所诱导的液滴变形特征存在很大差异;分离发展与液滴变形过程的特征时间之比可由气液密度比的平方根表示,它决定了液滴早期变形的基本形态。分离发展阶段所占时间比例越高,即实验中气液密度比越高,则液滴更倾向于发展出单个显著的环形突起,反之则趋于形成多个相对均衡的突起。
  • 图  1  实验We-Oh参数范围

    Figure  1.  We-Oh scopes of experiments

    图  2  计算域和网格示意图

    Figure  2.  Schematic of simulation zone and grids

    图  3  t/td, 0~0.2时刻相近We条件下的液滴变形图像

    Figure  3.  Deformation images of water drops under limited We conditions at t/td, 0~0.2

    图  4  基于外流数值模拟不同变形形态的理论预测

    Figure  4.  Theoretical prediction of different deformation patterns based on numerical simulation of outer flow

    图  5  圆球表面剪切与压力发展过程

    Figure  5.  Development of shear stress and pressure distribution on the sphere surface

    图  6  流场建立初期的激波绕射

    Figure  6.  Shock diffraction in the early stage of flow field establishment

    图  7  分离流场形成过程(工况Ⅰ)

    Figure  7.  Establishment of flow separation in Case Ⅰ

    图  8  分离发展过程中球体表面压力系数分布(工况Ⅰ)

    Figure  8.  Pressure coefficient distribution on the sphere surface in the flow field establishment of Case Ⅰ

    图  9  分离发展过程中液滴表面径向加速度分布(工况Ⅰ)

    Figure  9.  Radial acceleration distribution on the sphere surfacein the flow field establishment of Case Ⅰ

    图  10  不同流动条件下二次涡(涡B)的出现时间

    Figure  10.  Occurrence time of secondary eddy (eddy B) in different flow conditions

    图  11  工况Ⅰ条件下变形各组分的量纲一加速度

    Figure  11.  Non-dimensional acceleration of deformation components in Case Ⅰ

    图  12  实验Ⅰ与Ⅱ中液滴变形的组分构成

    Figure  12.  Deformation components in Experiments Ⅰ and Ⅱ

    图  13  κ对液滴变形的影响(We=2 370,Re=4.2×104Mag=0.483,对应实验工况Ⅰ)

    Figure  13.  Influence of κ on drop deformation patterns (We=2 370, Re=4.2×104, Mag=0.483, corresponding to Case Ⅰ)

    表  1  实验参数

    Table  1.   Experimental parameters

    Cases d0/mm Mas ug /(m·s-1) ρg /(kg·m-3) We Re Oh ts, 0/μs td, 0/μs κ
    3.76 1.37 186.2 1.312 2 370 4.2×104 1.9×10-3 20.2 557.7 3.62×10-2
    2.66 1.89 396.3 0.460 2 670 1.9×104 2.3×10-3 6.7 312.9 2.14×10-2
    2.82 1.91 399.6 0.346 2 142 1.5×104 2.2×10-3 7.1 379.5 1.87×10-2
    3.04 2.36 560.3 0.162 2 118 8.9×103 2.1×10-3 5.4 426.9 1.26×10-2
    2.61 2.60 641.0 0.164 2 421 8.3×103 2.3×10-3 4.1 317.7 1.29×10-2
    下载: 导出CSV
  • [1] 费立森. 煤油在冷态超声速气流中喷射和雾化现象的初步研究[D]. 合肥: 中国科学技术大学, 2007: 1-12. http://www.xny365.com/xueshu/article-368279.html
    [2] 万云霞, 黄勇, 朱英.液体圆柱射流破碎过程的实验[J].航空动力学报, 2008, 23(2):208-214. http://www.doc88.com/p-4502158177738.html

    WAN Yunxia, HUANG Yong, ZHU Ying. Experiment on the breakup process of free round liquid jet[J]. Journal of Aerospace Power, 2008, 23(2):208-214. http://www.doc88.com/p-4502158177738.html
    [3] THEOFANOUS T G, LI G J, DINH T N. Aerobreakup in rarefied supersonic gas flows[J]. Journal of Fluids Engineering, 2004, 126(4):516-527. doi: 10.1115/1.1777234
    [4] THEOFANOUS T G, LI G J. On the physics of aerobreakup[J]. Physics of Fluids, 2008, 20(5):052103. doi: 10.1063/1.2907989
    [5] THEOFANOUS T G, MITKIN V V, NG C L, et al. The physics of aerobreakup:Ⅱ[J]. Physics of Fluids, 2012, 24(2):022104. doi: 10.1063/1.3680867
    [6] THEOFANOUS T G. Aerobreakup of Newtonian and viscoelastic liquids[J]. Annual Review of Fluid Mechanics, 2011, 43:661-690. doi: 10.1146/annurev-fluid-122109-160638
    [7] CHANG C H, DENG X, THEOFANOUS T G. Direct numerical simulation of interfacial instabilities:A consistent, conservative, all-speed, sharp-interface method[J]. Journal of Computational Physics, 2013, 242:946-990. doi: 10.1016/j.jcp.2013.01.014
    [8] JOSEPH D D, BELANGER J, BEAVERS G S. Breakup of a liquid drop suddenly exposed to a high-speed airstream[J]. International Journal of Multiphase Flow, 1999, 25(6):1263-1303.
    [9] PILCH M, ERDMAN C A. Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop[J]. International Journal of Multiphase Flow, 1987, 13(6):741-757. doi: 10.1016/0301-9322(87)90063-2
    [10] WIERZBA A, TAKAYAMA K. Experimental investigation of the aerodynamic breakup of liquid drops[J]. AIAA Journal, 1988, 26(11):1329-1335. doi: 10.2514/3.10044
    [11] 金仁瀚, 刘勇, 朱冬清, 等.初始直径对单液滴破碎特性影响的试验[J].航空动力学报, 2015, 30(10):2401-2409. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201510014

    JIN Renhan, LIU Yong, ZHU Dongqing, et al. Experiment on impact of initial diameter on breakup characteristic of single droplet[J]. Journal of Aerospace Power, 2015, 30(10):2401-2409. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201510014
    [12] 王超, 吴宇, 施红辉, 等.液滴在激波冲击下的破裂过程[J].爆炸与冲击, 2016, 36(1):129-134. doi: 10.11883/1001-1455(2016)01-0129-06

    WANG Chao, WU Yu, SHI Honghui, et al. Breakup process of a droplet under the impact of a shock wave[J]. Explosion and Shock Waves, 2016, 36(1):129-134. doi: 10.11883/1001-1455(2016)01-0129-06
    [13] 易翔宇, 朱雨建, 杨基明.激波诱导高速气流中液滴的初期变形[J].爆炸与冲击, 2017, 37(5):853-862. doi: 10.11883/1001-1455(2017)05-0853-10

    YI Xiangyu, ZHU Yujian, YANG Jiming. Early-stage deformation of liquid drop in shock induced high-speed flow[J]. Explosion and Shock Waves, 2017, 37(5):853-862. doi: 10.11883/1001-1455(2017)05-0853-10
    [14] SUN M, SAITO T, TAKAYAMA K, et al. Unsteady drag on a sphere by shock wave loading[J]. Shock Waves, 2005, 14(1/2):3-9. doi: 10.1007/s00193-004-0235-4.pdf
    [15] KALITA J C, SEN S. Unsteady separation leading to secondary and tertiary vortex dynamics:The sub-α-and sub-β-phenomena[J]. Journal of Fluid Mechanics, 2013, 730:19-51. doi: 10.1017/jfm.2013.272
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  5032
  • HTML全文浏览量:  1833
  • PDF下载量:  165
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-09
  • 修回日期:  2016-12-28
  • 刊出日期:  2018-05-25

目录

    /

    返回文章
    返回