Effects of three-point initiation control parameters on formation of explosively-formed projectiles with fins
-
摘要: 针对三点起爆控制参数(起爆直径、起爆同步误差)对尾翼爆炸成型弹丸(explosively formed projectile,EFP)成型的影响问题,理论分析了三点起爆条件下爆轰波的马赫碰撞,计算获得了不同起爆直径下马赫波的相关参数,利用LS-DYNA有限元软件通过数值模拟研究了不同起爆直径下三点起爆同步误差对EFP尾翼成型及飞行速度的影响规律。结果表明,起爆直径越大,马赫波在药型罩上的作用面积越小,马赫超压越大,形成的EFP长径比和速度越大;起爆直径为30、40、50 mm三点起爆成型装药形成较佳尾翼EFP应满足的最大起爆同步误差分别为50、100、150 ns;此外,尽量使中间起爆点起爆同步误差约为最大同步误差的一半,有利于降低尾翼EFP的侧向分速度,提高飞行稳定性。Abstract: Effects of the three-point initiation control parameters on the formation of an explosively-formed projectile (EFP) with fins were studied, including initiation diameter and initiation synchronization error. The Mach wave parameters (pressure and Mach wave domain area) at the metal liner were calculated theoretically at different initiation diameters. The fin formation and stable-flight velocity of EFP caused by the synchronization error at different initiation diameters were investigated by employing the LS-DYNA software. Results indicate that the Mach wave domain area decreases, but the pressure, final velocity and length-to-diameter ratio of the EFP increase, as the initiation diameter increases. It is noted that a better empennage formation can be approached when the initiation synchronization errors at the initiation diameters of 30, 40, 50 mm are less than 50, 100, 150 ns, respectively. In addition, the lateral velocity of the EFP is lower and the flight stability is higher when the delay time of the middle detonation point is about half the maximum delay time of the three initiation points.
-
表 1 数值计算和试验结果的比较
Table 1. Comparison between numerical and experimental results
表 2 马赫波区计算结果
Table 2. Results in Mach domain
Dini/mm zO/mm yO/mm h/mm p/pCJ 理论 模拟 理论 模拟 理论 模拟 理论 模拟 20 8.36 8.27 0 0 2.16 1.98 1.52 1.41 30 12.50 11.70 0 0 1.11 1.08 1.72 1.64 40 16.70 15.90 0 0 0.56 0.50 2.22 2.17 50 20.90 19.80 0 0 0.26 0.23 2.69 2.51 表 3 三点起爆同步误差分布
Table 3. Distribution of three-point initiation synchronization error
工况 Δt1/ns Δt2/ns Δt3/ns 0 0 0 0 1 0 0 50 2 0 50 50 3 0 0 100 4 0 50 100 5 0 100 100 6 0 0 150 7 0 50 150 8 0 100 150 9 0 150 150 10 0 0 200 11 0 50 200 12 0 100 200 13 0 150 200 14 0 200 200 15 0 0 300 16 0 50 300 17 0 100 300 18 0 150 300 19 0 200 300 20 0 300 300 -
[1] BENDER D, CHHOUK B, FONG R, et al. Explosively formed penetrators (EFP) with canted fins[C]//19th International Symposium on Ballistics. Interlaken, Switzerland, 2001: 755-762. [2] 于川, 董庆东, 孙承纬, 等.带尾翼翻转型爆炸成形弹丸试验研究[J].爆炸与冲击, 2003, 23(6):561-564.DOI: 10.3321/j.issn:1001-1455.2003.06.013.YU Chuan, DONG Qingdong, SUN Chengwei, et al. The experimental studies of explosively formed projectile with star shaped tail[J]. Explosion and Shock Waves, 2003, 23(6):561-564. DOI: 10.3321/j.issn:1001-1455.2003.06.013. [3] BOUET T, TARAYRE P, GUILLON J P. Study of a multi-point ignition EFP[C]//15th International Symposium on Ballistics. Jerusalem, Israel, 1995: 159-166. [4] CARDOSO D, TEIXEIRA D F. Modelling the formation of explosively formed projectile (EFP)[J]. International Journal of Impact Engineering, 2016, 93:116-127.DOI: 10.1016/j.ijimpeng.2016.02.014. [5] 罗健, 蒋建伟, 朱宝祥.多点起爆对EFP形成的影响研究[J].弹箭与制导学报, 2004, 24(2):27-29.DOI: 10.3969/j.issn.1673-9728.2004.02.009.LUO Jian, JIANG Jianwei, ZHU Baoxiang. The effect of multi-point initiation on the explosively formed penetrator formation[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2004, 24(2):27-29. DOI: 10.3969/j.issn.1673-9728.2004.02.009. [6] LI Weibing, WANG Xiaoming, LI Wenbin. The effect of annular multi-point initiation on the formation and penetration of an explosively formed penetrator[J]. International Journal of Impact Engineering, 2010, 37(4):414-424. DOI: 10.1016/j.ijimpeng.2009.08.008. [7] 刘建青, 郭涛, 顾文彬, 等.三点起爆形成尾翼EFP的数值模拟和实验研究[J].爆炸与冲击, 2013, 33(1):38-46.DOI: 10.3969/j.issn.1001-1455.2013.01.005.LIU Jianqing, GUO Tao, GU Wenbin, et al. Numerical simulation and experimental investigation of EFPs with fins formed by three point initiation[J]. Explosion and Shock Waves, 2013, 33(1):38-46. DOI: 10.3969/j.issn.1001-1455.2013.01.005. [8] 王力, 韩峰, 陈放, 等.偏心对称起爆战斗部破片初速的增益[J].爆炸与冲击, 2016, 36(1):69-74.DOI: 10.11883/1001-1455(2016)01-0069-06.WANG Li, HAN Feng, CHEN Fang, et al. Fragments' velocity of eccentric warhead with double symmetric detonators[J]. Explosion and Shock Waves, 2016, 36(1):69-74. DOI: 10.11883/1001-1455(2016)01-0069-06. [9] MULLER F. Mach-reflection of detonation waves in condensed high explosives[J]. Propellants, Explosives, Pyrotechnics, 1978, 3(4):115-118. DOI: 10.1002/prep.19780030403. [10] 王继海.二维非定常流和激波[M].北京:科学出版社, 1994:38-146. [11] ZHU Chuansheng, HUANG Zhengxiang, ZU Xudong, et al. Mach wave control in explosively formed projectile warhead[J]. Propellants, Explosives, Pyrotechnics, 2014, 39(6):909-915. DOI: 10.1002/prep.201400106.