甲烷/石松子两相混合体系爆炸强度参数

喻健良 孙会利 纪文涛 闫兴清 张新燕 蔡林锋

喻健良, 孙会利, 纪文涛, 闫兴清, 张新燕, 蔡林锋. 甲烷/石松子两相混合体系爆炸强度参数[J]. 爆炸与冲击, 2018, 38(1): 92-97. doi: 10.11883/bzycj-2016-0276
引用本文: 喻健良, 孙会利, 纪文涛, 闫兴清, 张新燕, 蔡林锋. 甲烷/石松子两相混合体系爆炸强度参数[J]. 爆炸与冲击, 2018, 38(1): 92-97. doi: 10.11883/bzycj-2016-0276
YU Jianliang, SUN Huili, JI Wentao, YAN Xingqing, ZHANG Xinyan, CAI Linfeng. Explosion severity parameters of hybrid mixture of methane and lycopodium dust[J]. Explosion And Shock Waves, 2018, 38(1): 92-97. doi: 10.11883/bzycj-2016-0276
Citation: YU Jianliang, SUN Huili, JI Wentao, YAN Xingqing, ZHANG Xinyan, CAI Linfeng. Explosion severity parameters of hybrid mixture of methane and lycopodium dust[J]. Explosion And Shock Waves, 2018, 38(1): 92-97. doi: 10.11883/bzycj-2016-0276

甲烷/石松子两相混合体系爆炸强度参数

doi: 10.11883/bzycj-2016-0276
基金项目: 

国家自然科学基金项目 51604057

国家自然科学基金项目 51574056

详细信息
    作者简介:

    喻健良(1963—),男,博士,教授,博士生导师, yujianliang@dlut.edu.cn

  • 中图分类号: O381;X392

Explosion severity parameters of hybrid mixture of methane and lycopodium dust

  • 摘要: 基于改进的20 L球形粉尘爆炸装置,在相同初始条件下分别测量了甲烷、石松子粉尘和甲烷/石松子两相混合体系的爆炸压力、爆炸压力上升速率和爆炸指数等参数,系统研究了甲烷/石松子粉尘两相混合体系爆炸特性变化规律。结果表明:甲烷的添加能显著提高低质量浓度石松子粉尘爆炸压力而降低高质量浓度石松子粉尘爆炸压力;甲烷对石松子粉尘最大爆炸压力没有显著影响,但能显著提高石松子粉尘最大爆炸压力上升速率。甲烷/石松子粉尘混合体系爆炸指数高于单相石松子粉尘爆炸指数,但甲烷/石松子粉尘混合体系和单相石松子粉尘爆炸指数均低于单相甲烷爆炸指数。工业生产过程中应避免粉尘混入可燃气体以降低粉尘爆炸危险性。
  • 图  1  改进的标准20 L球形粉尘爆炸装置流程图

    Figure  1.  Flow of modified standard 20 L spherical apparatus

    图  2  石松子粉尘扫描电镜结构图

    Figure  2.  Scanning electron microscope photo of lycopodium dust

    图  3  石松子粉尘粒径分布(D[50]=39 μm)

    Figure  3.  Particle size distribution of lycopodium dust with D[50]=39 μm

    图  4  甲烷体积分数为0%、2%、4%、6%、8%、10%和12%时石松子粉尘爆炸压力

    Figure  4.  Explosion pressure of lycopodium dust at the methane mass fractions of 0%, 2%, 4%, 6%, 8%, 10% and 12%

    图  5  甲烷/石松子混合体系爆炸压力

    Figure  5.  Explosion pressure of hybrid mixtures of methane and lycopodium dust

    图  6  甲烷/石松子混合体系的最佳爆炸质量浓度随甲烷体积分数的变化

    Figure  6.  Optimum mass concentration of methane/lycopodium mixtures varying with methane volume fraction

    图  7  石松子粉尘最大爆炸升压速率随甲烷体积分数的变化

    Figure  7.  Maximum explosion pressure rise rate of lycopodium dust at different methane volume fractions

    表  1  甲烷、石松子粉尘及甲烷/石松子混合体系爆燃指数

    Table  1.   Explosive deflagration indices of methane, lycopodium and methane/lycopodium mixtures

    φ/% ρ/(g·m-3) (dp/dt)max/(MPa·s-1) Kst(KG)/(MPa·m·s-1)
    0(pure dust) 750 18.81 5.11
    2 750 19.98 5.42
    4 500 21.16 5.74
    6 250 28.21 7.66
    10(pure CH4) 0 126.94 34.46
    下载: 导出CSV
  • [1] SANCHIRICO R, RUSSO P, SALIVA A, et al. Explosion of lycopodium-nicotinic acid-methane complex hybrid mixtures[J]. Journal of Loss Prevention in the Process Industries, 2014, 36:505-508. https://www.sciencedirect.com/science/article/pii/S0950423014002241
    [2] ADDAI E K, GABEL D, KRAUSE U. Experimental investigation on the minimum ignition temperature of hybrid mixtures of dusts and gases or solvents[J]. Journal of Hazardous Materials, 2016, 301:314-326. doi: 10.1016/j.jhazmat.2015.09.006
    [3] ABUSWER M, AMYOTTE P, KHAN F. A quantitative risk management framework for dust and hybrid mixture explosions[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(2):283-289. doi: 10.1016/j.jlp.2011.08.010
    [4] CASHDOLLAR K L. Coal dust explosibility[J]. Journal of Loss Prevention in the Process Industries, 1996, 9(1):65-76. doi: 10.1016/0950-4230(95)00050-X
    [5] DUFAUD O, PERRIN L, TRAORE M, et al. Explosions of vapour/dust hybrid mixtures: A particular class[J]. Powder Technology, 2009, 190(1/2):269-273. https://www.researchgate.net/publication/232374600_Explosions_of_vapourdust_hybrid_mixtures_A_particular_class
    [6] SANCHIRICO R, BENEDETTO A D, GARCIA-AGREDA A, et al. Study of the severity of hybrid mixture explosions and comparison to pure dust-air and vapour-air explosions[J]. Journal of Loss Prevention in the Process Industries, 2011, 24(5):648-655. doi: 10.1016/j.jlp.2011.05.005
    [7] BARTKNECHT W. Dust explosions: Course, prevention, protection[M]. Springer Science & Business Media, 2012:25-56.
    [8] DENKEVITS A, HOESS B. Hybrid H 2 /Al dust explosions in Siwek sphere[J]. Journal of Loss Prevention in the Process Industries, 2015, 36:509-521. doi: 10.1016/j.jlp.2015.03.024
    [9] AMYOTTE P, ABUSWER M, DI BENEDETTO A, et al. Determination of hybrid mixture explosion severity[C]//Proceedings of the 13th International Symposium on Loss Prevention and Safety Promotion in the Process Industries. Brugge, Be, 2010, 2: 149-156.
    [10] AMYOTTE P, LINDSAY M, DOMARATZKI R, et al. Prevention and mitigation of dust and hybrid mixture explosions[J]. Process Safety Progress, 2010, 29(1):17-21. https://www.researchgate.net/publication/230036461_Prevention_and_Mitigation_of_Dust_and_Hybrid_Mixture_Explosions
    [11] LIU Yi, SUN Jinhua, CHEN Dongliang. Flame propagation in hybrid mixture of coal and methane[J]. Journal of Loss Prevention in the Process Industries, 2007, 20(4/5/6):691-697. https://www.sciencedirect.com/science/article/pii/S0950423007000629
    [12] 喻健良, 闫兴清.高静态动作压力下粉尘爆炸泄放标准的可靠性[J].东北大学学报(自然科学版), 2015, 36(9):1316-1320. doi: 10.3969/j.issn.1005-3026.2015.09.022

    YU Jianliang, YAN Xingqing. Reliability of dust explosion venting standards under elevated static activation overpressures[J]. Journal of Northeastern University (Natural Science), 2015, 36(9):1316-1320. doi: 10.3969/j.issn.1005-3026.2015.09.022
    [13] YAN Xingqing, YU Jianliang, GAO Wei. Duct-venting of dust explosions in a 20 L sphere at elevated static activation overpressures[J]. Journal of Loss Prevention in the Process Industries, 2014, 32(1):63-69. https://www.sciencedirect.com/science/article/pii/S0950423014001259
    [14] GOING J E, CHATRATHI K, CASHDOLLAR K L. Flammability limit measurements for dusts in 20-L and 1-m3 vessels[J]. Journal of Loss Prevention in the Process Industries, 2000, 13(3/4/5):209-219. https://www.cdc.gov/niosh/mining/UserFiles/works/pdfs/flmfd.pdf
    [15] DASTIDAR A G, AMYOTTE P R. Explosibility boundaries for fly ash/pulverized fuel mixtures[J]. Journal of Hazardous Materials, 2002, 92(2):115-26. doi: 10.1016/S0304-3894(01)00390-9
    [16] GARCIA-AGREDA A, DI BENEDETTO A, RUSSO P, et al. Dust/gas mixtures explosion regimes[J]. Powder Technology, 2011, 205(1):81-86. https://www.sciencedirect.com/science/article/pii/S0032591010004705
    [17] National Fire Protection Association, NFPA68. Standard on explosion protection by deflagration venting[S]. Quincy, MA: Batterymarch Parck, 2007: 10-11.
    [18] E 1226. Standard tests method for explosibility of dust clouds[S]. American Society for Testing Materials, 2010: 1-2.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  5323
  • HTML全文浏览量:  1812
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-09
  • 修回日期:  2016-12-13
  • 刊出日期:  2018-01-25

目录

    /

    返回文章
    返回