Liquid high pulse pressure calibration by laser interferometry
-
摘要: 针对压电式高压传感器等的幅值灵敏度脉冲压力校准中的量值溯源问题,将一种基于牛顿第二定律的液体脉冲压力激光干涉测量方法用于落锤式液体高脉冲压力校准装置。通过质量块的动力学建模以及激光干涉测量质量块的加速度,得到脉冲压力幅值大小,使脉冲压力幅值能溯源到时间、长度与质量等基本量。通过对压力和加速度分布不均、摩擦力等影响进行理论与实验分析,压电式压力传感器幅值灵敏度校准不确定度得到了完整评估。激光干涉法液体脉冲压力校准装置压力幅值覆盖(10~500)MPa,扩展不确定度在1.8%以内。Abstract: In order to achieve traceable dynamic pressure measurement in the liquid pulse pressure calibration, a dynamic pressure measurement method by laser interferometry based on Newton's second law is used. The pulse pressure is generated by a drop mass' impact on the piston in the liquid cavity to calibrate the amplitude sensitivity of the piezoelectric sensor. The amplitude of the pulse pressure is calculated from the mass and the mass' acceleration measured by the laser interferometer. Theoretical and experimental analysis of the pressure distribution in the pressure cavity, the acceleration distribution in the mass and the frictions are done, and then the measurement uncertainty of the piezoelectric pressure sensor's amplitude sensitivity calibration is analyzed. The measurement range of the calibration device is (10-500) MPa and the extend uncertainty is less than 1.8%.
-
Key words:
- pulse pressure /
- high pressure /
- laser interferometer /
- error analysis
-
表 1 压力传感器(KISTLER 6213B)幅值灵敏度校准结果
Table 1. Amplitude sensitivity calibration of a pressure sensor (KISTLER 6213B) with pulse pressure
Serial Pressure amplitude/MPa Pulse duration/ms Calibrated sensitivity/(pC·MPa-1) Deviation/% RSD/% 1 6.25 9.8 12.086 4 0.72 0.43 2 41.20 9.5 11.966 4 -0.28 0.49 3 90.00 8.5 12.118 8 0.99 0.40 4 117.30 5.8 12.206 4 1.72 0.50 5 498.80 5.9 12.068 4 0.57 0.17 -
[1] The Instrumentation, Systems, and Automation Society. A guide for the dynamic calibration of pressure transducers: ISA-37. 16. 01-2002[R]. 2002. [2] HJELMGREN J. Dynamic measurement of pressure: A literature survey[R]. 2002: 34. [3] JIM L, DAN C. Dynamic pressure calibration[R]. PCB Piezotronics Technical Note TN-15-0205, 2005. [4] 孔德仁, 孙海波, 朱明武, 等.压力动态绝对校准方法研究[J].南京理工大学学报, 2000, 24(3):261-264. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njlgdxxb200003017KONG Deren, SUN Haibo, ZHU Mingwu, et al. Dynamic pressure absolute calibration method[J]. Journal of Nanjing University of Science and Technology, 2000, 24(3):261-264. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njlgdxxb200003017 [5] BARTOLI C, BEUG M F, BRUNS T, et al. Traceable dynamic measurement of mechanical quantities:Objectives and first results of this European project[J]. International Journal of Metrology and Quality Engineering, 2013, 3(3):127-135. https://dalspace.library.dal.ca/bitstream/handle/10222/45110/Bartoli_Traceable.pdf?sequence=1&isAllowed=y [6] LAKKA A, SAXHOLM S. Drop-weight system for dynamic pressure calibration[C]//8th Workshop on Analysis of Dynamic Measurements. Turin, 2014. [7] DURGUT Y, AKSAHIN E, BAGCI E, et al. Preliminary dynamic pressure measurement system at ume[C]//XXI IMEKO World Congress. Prague, 2015. [8] MALENGO A, PENNECCHI F. Drop-weight system for dynamic pressure calibration: Calibration models and methods[C]//8th Workshop on Analysis of Dynamic Measurements. Turin, 2014. [9] BRUNS T, FRANKE E, KOBUSCH M. Linking dynamic pressure to static pressure by laser interferometry[J]. Metrologia, 2013, 50:580-585. doi: 10.1088/0026-1394/50/6/580 [10] KOBUSCH M, BRUNS T. European research project for the dynamic measurement of mechanical quantities[J]. PTB Mitteilungen:Amts-und Mitteilungsblatt der Physikalisch-Technischen Bundesanstalt, 2015, 125(2):4-11. DOI: 10.7795/310.20150202. [11] 朱明武.压力准静态校准技术[J].宇航计测技术, 2004, 24(2):19-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yhjcjs200402006ZHU Mingwu. Pressure quasi-static calibration technology[J]. Journal of Astronautic Metrology and Measurement, 2004, 24(2):19-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yhjcjs200402006