聚奥-9C装药的传爆管殉爆

袁俊明 李硕 刘玉存 唐鑫 于雁武 闫利伟

袁俊明, 李硕, 刘玉存, 唐鑫, 于雁武, 闫利伟. 聚奥-9C装药的传爆管殉爆[J]. 爆炸与冲击, 2018, 38(3): 632-638. doi: 10.11883/bzycj-2016-0293
引用本文: 袁俊明, 李硕, 刘玉存, 唐鑫, 于雁武, 闫利伟. 聚奥-9C装药的传爆管殉爆[J]. 爆炸与冲击, 2018, 38(3): 632-638. doi: 10.11883/bzycj-2016-0293
YUAN Junming, LI Shuo, LIU Yucun, TANG Xin, YU Yanwu, YAN Liwei. Sympathetic detonation of booster pipe with JO-9C charge[J]. Explosion And Shock Waves, 2018, 38(3): 632-638. doi: 10.11883/bzycj-2016-0293
Citation: YUAN Junming, LI Shuo, LIU Yucun, TANG Xin, YU Yanwu, YAN Liwei. Sympathetic detonation of booster pipe with JO-9C charge[J]. Explosion And Shock Waves, 2018, 38(3): 632-638. doi: 10.11883/bzycj-2016-0293

聚奥-9C装药的传爆管殉爆

doi: 10.11883/bzycj-2016-0293
基金项目: 

中物院安全弹药研发中心开放基金项目 RMC2014B03

详细信息
    作者简介:

    袁俊明(1979-), 男, 博士, 副教授, junmyuan@163.com

  • 中图分类号: O381

Sympathetic detonation of booster pipe with JO-9C charge

  • 摘要: 为了研究冲击波作用下引信传爆装置的响应规律,进行了以主发炸药为RDX-8701、被发装置为聚奥-9C(JO-9C)装药的传爆管(含导爆药柱)的殉爆实验。通过观测残留传爆药、壳体和见证块变形,判断传爆管的爆炸程度,分析了殉爆过程中JO-9C爆轰波的成长历程及传播规律。采用AUTODYN软件建立了殉爆实验有限元模型,计算模型中主要考虑了主发炸药产生的爆炸冲击波对传爆管的冲击响应。基于流固耦合方法,通过调整距离模拟计算得到了传爆管的临界殉爆距离和殉爆安全距离。结果表明,传爆管上端的侧角受到爆炸冲击后产生的爆轰波沿斜下方传播,使传爆药柱完全爆轰,并引起导爆药柱发生殉爆;数值模拟结果显示,JO-9C装药的传爆管临界殉爆距离为5.7 mm,殉爆安全距离为8.8 mm。
  • 图  1  殉爆实验示意图

    Figure  1.  Sketch of sympathetic detonation experiment

    图  2  殉爆实验装置

    Figure  2.  Sympathetic detonation experimental apparatus

    图  3  殉爆实验有限元模型

    Figure  3.  Finite element model ofsympathetic detonation experiment

    图  4  距离5和10 mm时见证块凹坑

    Figure  4.  Deformation of steel witness plate at 5 and 10 mm

    图  5  距离10 mm时传爆管殉爆效果

    Figure  5.  Blasting effect of booster pipe at 10 mm

    图  6  实验距离6和8 mm见证块凹坑

    Figure  6.  Deformation of steel witness plate at 6 and 8 mm

    图  7  距离8 mm时传爆管殉爆效果

    Figure  7.  Blasting effect of booster pipe at 8 mm

    图  8  距离5 mm时传爆管殉爆压力云图

    Figure  8.  Pressure contours of sympathetic detonation for booster pipe at 5 mm

    图  9  距离5 mm时传爆药柱的压力

    Figure  9.  Pressures of booster charge at 5 mm

    图  10  距离5 mm时导爆药柱的压力

    Figure  10.  Pressures of detonating explosive at 5 mm

    图  11  距离5.7 mm时传爆药柱的压力

    Figure  11.  Pressures of booster charge at 5.7 mm

    图  12  距离5.7 mm时导爆药柱的压力

    Figure  12.  Pressures of detonating explosive at 5.7 mm

    图  13  距离8.8 mm时传爆药柱的压力

    Figure  13.  Pressures of booster charge at 8.8 mm

    图  14  距离8.8 mm时导爆药柱的压力

    Figure  14.  Pressures of detonating explosive at 8.8 mm

  • [1] LU J P, LOCHERT I J, KENNEDY D L, et al. Simulation of sympathetic reaction tests for PBXN-109[C]//Proceedings of 13th International Symposium on Detonation. New York, USA, 2006: 1338-1349.
    [2] FISHER S, BAKER E L, WELLS L, et al. XM982 excalibur sympathetic detonation modeling and experimentation[C]//Insensitive Munitions and Energetic Materials Technology Symposium. New York, USA, 2006: 937-951.
    [3] MOSTAFA H E, MEKKY W F, El-DAKHAKHNI W W. Sympathetic detonation wave attenuation using polyurethane foam[J]. Journal of Materials in Civil Engineering, 2013, 26(8):04014046. doi: 10.1061/%28ASCE%29MT.1943-5533.0000934
    [4] 周保顺, 王少龙, 徐明利, 等.非均质炸药殉爆试验数值模拟[J].弹箭与制导学报, 2009, 29(5):145-148. http://d.old.wanfangdata.com.cn/Periodical/djyzdxb200905039

    ZHOU Baoshun, WANG Shaolong, XU Mingli, et al. Numerical simulation of sympathetic detonation of heterogeneous condensed explosives[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(5):145-148. http://d.old.wanfangdata.com.cn/Periodical/djyzdxb200905039
    [5] 陈朗, 王晨, 鲁建英, 等.炸药殉爆实验和数值模拟[J].北京理工大学学报, 2009, 29(6):497-501. http://d.old.wanfangdata.com.cn/Periodical/bzycj201002007

    CHEN Lang, WANG Chen, LU Jianying, et al. Experiment simulation of sympathetic detonation tests[J]. Transactions of Beijing Institute of Technology, 2009, 29(6):497-501. http://d.old.wanfangdata.com.cn/Periodical/bzycj201002007
    [6] 姜颖资, 王伟力, 黄雪峰, 等.带壳炸药在高速运动炸药作用下殉爆效应研究[J].工程爆破, 2014, 20(3):1-4. http://www.cqvip.com/QK/98385X/201403/661615887.html

    JIANG Yingzi, WANG Weili, HUANG Xuefeng, et al. Research on the sympathetic detonation effect of shelled explosive by high-speed movement explosive[J]. Engineering Blasting, 2014, 20(3):1-4. http://www.cqvip.com/QK/98385X/201403/661615887.html
    [7] 王晨, 伍俊英, 陈朗, 等.壳装炸药殉爆实验和数值模拟[J].爆炸与冲击, 2010, 30(2):152-158. doi: 10.11883/1001-1455(2010)02-0152-07

    WANG Chen, WU Junying, CHEN Lang, et al. Experiments and numerical simulations of sympathetic detonation of explosives in shell[J]. Explosion and Shock Waves, 2010, 30(2):152-158. doi: 10.11883/1001-1455(2010)02-0152-07
    [8] 路胜卓, 罗卫华, 陈卫东, 等.壳装高能固体推进剂的殉爆实验与数值模拟[J].哈尔滨工程大学学报, 2014, 35(12):1507-1512. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgcdxxb201412010

    LU Shengzhuo, LUO Weihua, CHEN Weidong, et al. Experiments and numerical simulations of sympathetic detonation of high-energy solid propellant in shell[J]. Journal of Harbin Engineering University, 2014, 35(12):1507-1512. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgcdxxb201412010
    [9] 陶为俊, 浣石. RDX-8701炸药二维冲击起爆状态的研究[C]//第八届全国爆炸力学学术会议. 江西吉安, 2007: 58-63.
    [10] VANDERSALL K S, TARVER C M, GARCIA F, et al. On the low pressure shock initiation of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine based plastic bonded explosives[J]. Journal of Applied Physics, 2010, 107(9):094906. doi: 10.1063/1.3407570
    [11] 李晓杰, 姜力, 赵铮, 等.高速旋转弹头侵彻运动金属薄板的数值模拟[J].爆炸与冲击, 2008, 28(1):57-61. doi: 10.11883/1001-1455(2008)01-0057-05

    LI Xiaojie, JIANG Li, ZHAO Zheng, et al. Numerical study on penetration of a high-speed-rotating bullet into the moving sheet-metal plate[J]. Explosion and Shock Waves, 2008, 28(1):57-61. doi: 10.11883/1001-1455(2008)01-0057-05
  • 加载中
图(14)
计量
  • 文章访问数:  5733
  • HTML全文浏览量:  2203
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-23
  • 修回日期:  2016-11-08
  • 刊出日期:  2018-05-25

目录

    /

    返回文章
    返回