Research progress of composite sandwich structure in ship collision protection
-
摘要: 为了提高舰艇的碰撞防护能力,已发展了各种舰艇碰撞防护方法。传统的碰撞防护手段会使舰艇重量大幅增加,影响舰艇总体性能。复合材料夹层结构的出现给舰艇碰撞防护结构设计提供了另外一条途径,成为近期国内外相关研究的热点。本文以舰艇碰撞防护为背景,从复合材料夹层结构的低速冲击实验方法、变形损伤机理、冲击吸能影响因素、分析研究方法等几方面进行回顾、总结和归纳,并对今后的研究方向进行展望。Abstract: In this paper, various collision protection methods were presented to ameliorate naval ships' collision protective capability. Conventional collision protection methods may result in the increase of the ship's weight and reduction of its functional performance. Composite sandwich plates serve as a new approach to the design of the collision protection structure, and have become one of the hottest research topics worldwide. With naval ships' collision resistance as its academic background, this paper reviewed the recent advances in the areas of experimental methods, deformation damage mechanisms, energy absorption factors, analysis methods and offered suggestions of future research directions in composite sandwich plates.
-
Key words:
- composite material /
- sandwich structure /
- ship collision /
- deformation modes /
- damage mechanisms
-
表 1 典型抗冲击纤维力学性能
Table 1. Mechanical properties of typical impact-resistant fibers
纤维类型 典型产品 密度/
(g·cm-3)拉伸强度/
GPa拉伸模量/
GPa断裂延伸率/
%波速/
(km·s-1)超高分子量
聚乙烯纤维迪力玛SK60 0.97 2.7 87 3.5 9.5 迪力玛SK65 0.97 3.0 95 3.6 9.8 迪力玛SK66 0.97 3.1 100 3.5 10.0 迪力玛SK75 0.97 3.4 107 3.8 11.0 迪力玛SK76 0.97 3.6 116 3.8 12.0 芳纶纤维 凯芙拉129 1.44 3.38 83 3.3 8.2 凯芙拉KM2 1.44 3.43 64 4.3 6.5 特沃纶CT 1.44 3.3 90 3.3 7.9 特沃纶HM 1.45 2.8 121 2.1 9.1 碳纤维 碳纤维HS 1.78 3.4 240 1.4 11.5 碳纤维HM 1.85 2.3 390 0.5 14.5 PBO(聚对苯撑
苯并二噁唑)纤维柴隆HM 1.56 5.8 280 2.5 13.5 聚芳酯纤维 维克特拉HT 1.44 3.30 76 3.8 7.28 聚乙烯醇纤维 异丁嗪7901 1.32 2.5 39 5.2 - 尼龙66 HT 1.14 1.0 5 18.2 2.0 玻璃纤维 E 2.55 2.0 73 2.0 - -
[1] 董慧民, 安学锋, 益小苏, 等.纤维增强聚合物基复合材料低速冲击研究进展[J].材料工程, 2015, 43(5):89-100. doi: 10.11868/j.issn.1001-4381.2015.05.015DONG Huiming, AN Xuefeng, YI Xiaosu, et al. Progress in research on low velocity impact properties of fiber reinforced polymer matrix composite[J]. Journal of Materials Engineering, 2015, 43(5):89-100. doi: 10.11868/j.issn.1001-4381.2015.05.015 [2] 高禹, 王绍权, 董尚利, 等.复合材料低速冲击测试与分析方法的研究进展[J].高分子材料科学与工程, 2015, 31(7):185-190. http://www.cnki.com.cn/Article/CJFDTOTAL-GFZC201507035.htmGAO Yu, WANG Shaoquan, DONG Shangli, et al. Recent development in low-velocity impact test and analysis for composite plates[J]. Polymer Materials Science and Engineering, 2015, 31(7):185-190. http://www.cnki.com.cn/Article/CJFDTOTAL-GFZC201507035.htm [3] 张晓君, 杜志鹏, 谢永和.夹层板在舰艇碰撞防护中的研究进展[J].中国造船, 2011, 52(4):271-281. http://xueshu.baidu.com/s?wd=paperuri%3A%28dda501b4345a1c30f95fcd33669d238d%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fkns.cnki.net%2FKCMS%2Fdetail%2Fdetail.aspx%3Ffilename%3Dzgzc201104033%26dbname%3DCJFD%26dbcode%3DCJFQ&ie=utf-8&sc_us=14655936720077179849ZHANG Xiaojun, DU Zhipeng, XIE Yonghe. Advances in study of sandwich plates for ship shock mitigating[J]. Shipbuilding of China, 2011, 52(4):271-281. http://xueshu.baidu.com/s?wd=paperuri%3A%28dda501b4345a1c30f95fcd33669d238d%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fkns.cnki.net%2FKCMS%2Fdetail%2Fdetail.aspx%3Ffilename%3Dzgzc201104033%26dbname%3DCJFD%26dbcode%3DCJFQ&ie=utf-8&sc_us=14655936720077179849 [4] 肖锋, 谌勇, 章振华, 等.夹层结构冲击动力学研究综述[J].振动与冲击, 2013, 32(18):1-5. doi: 10.3969/j.issn.1000-3835.2013.18.001XIAO Feng, CHEN Yong, ZHANG Zhenhua, et al. A review of studying on impact dynamics of sandwich structures[J]. Journal of Vibration and Shock, 2013, 32(18):1-5. doi: 10.3969/j.issn.1000-3835.2013.18.001 [5] 敬霖, 王志华, 赵隆茂.多孔金属及其夹芯结构力学性能的研究进展[J].力学与实践, 2015, 37(1):1-24. doi: 10.6052/1000-0879-14-180JING Lin, WANG Zhihua, ZHAO Longmao. Advances in studies of the mechanical performance of cellular metals and related sandwich structures[J]. Mechanics in Engineering, 2015, 37(1):1-24. doi: 10.6052/1000-0879-14-180 [6] MOURITZ A P, GELLERT E, BURCHHILL P, et al. Review of advanced composite structures for naval ships and submarines[J]. Composite Structures, 2001, 53(1):21-41. doi: 10.1016/S0263-8223(00)00175-6 [7] VINSON J R, RAJAPAKSE Y D S, CARLSSON L E. The 6th international conference on sandwich structures[C]. London: CRC Press, 2003. [8] 杨连新.国外核潜艇事故分类[J].现代舰船, 2001, 4(1):20-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgfsws200802050YANG Lianxin. Classification of foregin nuclear submarine accidents[J]. Modern Ships, 2001, 4(1):20-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgfsws200802050 [9] LIU Y. Crashworthiness design of multi-corner thin-walled columns[J]. Thin-Walled Structures, 2008, 46(12):1329-1337 doi: 10.1016/j.tws.2008.04.003 [10] LIU Y. Optimum design of straight thin walled box section beams for crashworthiness analysis[J]. Finite Elements in Analysis & Design, 2008, 44(3):139-147. https://www.sciencedirect.com/science/article/pii/S0168874X0700145X [11] HOU S. Design optimization of regular hexagonal thin-walled columns with crashworthiness criteria[J]. Finite Elements in Analysis & Design, 2007, 43(6/7):555-565. https://www.sciencedirect.com/science/article/pii/S0168874X06002046 [12] 王自力, 张延昌.基于夹层板的单壳船体结构耐撞性设计[J].中国造船, 2008(1):60-65. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsy-xby201305003WANG Zili, ZHANG Yanchang. Single hull ship structure crashworthy design based on sandwich panel[J]. Shipbuilding of China, 2008, (1):60-65. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsy-xby201305003 [13] 张延昌, 王自力, 顾金兰, 等.夹层板在舰船舷侧防护结构中的应用[J].中国造船, 2009(4):36-44. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC200904007.htmZHANG Yanchang, WANG Zili, GU Jinlan, et al. Application of sandwich panel in anti-shock design of warship's side structure[J]. Shipbuilding of China, 2009(4):36-44. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC200904007.htm [14] 张延昌, 王自力, 张世联, 等.基于折叠式夹层板船体结构耐撞性设计[J].船舶工程, 2009(6):1-5. http://d.wanfangdata.com.cn/Periodical_cbgc200906001.aspxZHANG Yanchang, WANG Zili, ZHANG Shilian, et al. Hull structural crashworthy design based on folding sandwich panel[J]. Ship Engineering, 2009(6):1-5. http://d.wanfangdata.com.cn/Periodical_cbgc200906001.aspx [15] 田媛, 刘均, 汪浩.砰击载荷下轻质波纹夹芯夹芯夹层板动力响应特性分析[J].船舶力学, 2016(10):1300-1308. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cblx201610010TIAN Yuan, LIU Jun, WANG Hao. Dynamic response of light weight corrugated-core sandwich plates subjected to slamming impact[J]. Journal of Ship Mechanics, 2016(10):1300-1308. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cblx201610010 [16] SJOBLOM P O, HARTNESS J T, CORDELL T M. On low velocity impact testing of composite materials[J]. Journal of Composite Materials, 1988, 22(1):30-52. doi: 10.1177/002199838802200103 [17] SHIVAKUMAR K N, ELBER W, ILLG W. Prediction of low velocity impact damage in thin circular laminates[J]. AIAA Journal, 1985, 23(3):442-449. doi: 10.2514/3.8933 [18] TITA V, CARVALHO J D, VANDEPITTE D. Failure analysis of low velocity impact on thin composite laminates:experimental and numerical approaches[J]. Composite Structures, 2008, 83(4):413-428. doi: 10.1016/j.compstruct.2007.06.003 [19] GHASEMNEJAD H, FURQUAN A S M, MASON P J. Charpy impact damage behavior of single and multi delaminated hybrid composite beam structures[J]. Materials & Design, 2010, 31(8):3653-3660. https://www.sciencedirect.com/science/article/pii/S0261306910001469 [20] REID S, REDDY T, GRAY M. Static and dynamic axial crushing of foam-filled sheet metal tubes[J]. International Journal of Mechanical Sciences, 1986(28):295-322. https://www.researchgate.net/publication/223139170_Static_and_Dynamic_Crushing_of_Foam-Filled_Sheet_Metal_Tubes [21] RICHARDSON M O W. ESPI non-destructive testing of GRP composite containing impact damage[J]. Composites A, 1998, 29(7):721-729. doi: 10.1016/S1359-835X(98)00004-9 [22] CHOTARD T J, BENZEGGAGH M L. On the mechanical behavior of pultruded sections submitted to low-velocity impact[J]. Composites Science & Technology, 1998, 58(6):839-854. [23] MELIN L G. A study of model-I cracks by high-magnification moire interferometry[J]. Composites Science & Technology, 1998, 58(3/4):515-525. https://www.sciencedirect.com/science/article/pii/S0266353897001590 [24] GIBSON L J, ASHBY M F. Cellular solids:structures and properties[M]. 2nd ed. London:Press syndicate of the University of Cambridge, 1997. [25] HANSSEN A G, ENSTOCK L, LANGSETH M. Close range blast loading of aluminium foam panels[J]. International Journal of Impact Engineering, 2002, 27(6):593-618. doi: 10.1016/S0734-743X(01)00155-5 [26] FLECK N A, DESHPANDE V S. The resistance of clamped sandwich beams to shock loading[J]. Journal of Applied Mechanics, 2004, 71(3):386-401. doi: 10.1115/1.1629109 [27] CHOI H Y, CHANG F K. A model for predicting damage in graphite/epoxy laminated composites resulting from low-velocity point impact[J]. Journal of Composite Materials, 1992, 26(14):2134-2169. doi: 10.1177/002199839202601408 [28] CHANG F, CHANG K. A progressive damage model for laminated composites containing stress concentrations[J]. Journal of Composite Materials, 1987, 21(9):834-855. doi: 10.1177/002199838702100904 [29] LEE S M, CHEON J S, IM Y T, Experimental and numerical study of the impact behavior of SMC plates[J]. Composite Structures, 1999, 47(1/2/3/4):551-561. https://www.sciencedirect.com/science/article/pii/S0263822300000210 [30] MITREVSKI T, MARSHALL IH, THOMSON R, et al. The effect of impactor shape on the impact response of composite laminates[J]. Composite Structures, 2005, 67(2):139-148. doi: 10.1016/j.compstruct.2004.09.007 [31] 王璐璐, 关志东.复合材料层板静压入破坏机制[J].复合材料学报, 2007, 24(6):135-140. http://www.oalib.com/paper/4177884WANG Lulu, GUAN Zhidong. Failure mechanism of composite laminate due to quasi-static pressure[J]. Acta Material Composite Sinica, 2007, 24(6):135-140. http://www.oalib.com/paper/4177884 [32] 夏军佳, 卫甘霖, 张征定.纤维力学性能与防弹性能的关系[J].纤维复合材料, 2004, 18(1):18-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xwfhcl200401006XIA Junjia, WEI Ganlin, ZHANG Zhengding. The relationship between fiber mechanical properties and its bulletproof protection[J]. Fiber Composite, 2004, 18(1):18-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xwfhcl200401006 [33] 王亮亮, 孙志杰, 张大兴, 等.混杂纤维丝束冲击拉伸性能实验研究[J].玻璃钢/复合材料, 2004, 19(3):19-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=blgfhcl200403005WANG Liangliang, SUN Zhijie, ZHANG Daxing, et al. Investigation of tensile impact property of hybrid fiber bundle[J]. Fiber Reinforced Plastics/Composites, 2004, 19(3):19-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=blgfhcl200403005 [34] 严文聪, 曾金芳, 王斌.纤维混杂复合材料研究进展[J].化工新型材料, 2011, 39(6):30-33. https://www.wenkuxiazai.com/doc/1086eb90e53a580216fcfea8.htmlYAN Wencong, ZENG Jinfang, WANG Bin. The progress in fibers hybrid composites[J]. New Chemical Material, 2011, 39(6):30-33. https://www.wenkuxiazai.com/doc/1086eb90e53a580216fcfea8.html [35] GOTTESMAN T, GIRSHOVICH S, DRUKKER E, etal. Residual strength of impacted composites:analysis and tests[J]. Journal of Composites Technology and Research, 1994, 16(3):244-255. doi: 10.1520/CTR10413J [36] 杨永祥, 张延昌.蜂窝式夹芯层结构横向耐撞性能数值仿真研究[J].江苏科技大学学报(自然科学版), 2007, 21(4):7-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hdcbgyxy200704002YANG Yongxiang, ZHANG Yanchang. Numerical simulation of honeycomb core structure under lateral impact load[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2007, 21(4):7-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hdcbgyxy200704002 [37] 王章忠, 张祖凤.硬质聚氨酯泡沫塑料芯材与夹层结构的研究[J].机械工程材料, 2004, 28(1):44-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxgccl200401015WANG Zhangzhong, ZHANG Zufeng. Rigid polyurethane foam core and its sandwich structure[J]. Materials for Mechanical Engineering, 2004, 28(1):44-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxgccl200401015 [38] WANG D M. Impact behavior and energy absorption of paper honeycomb sandwich panels[J]. International Journal of Impact Engineering, 2009(36):110-114. https://www.sciencedirect.com/science/article/pii/S0734743X08000420 [39] PARK J H, HA S K, KANG K W, et al. Impact damage resistance of sandwich structure subjected to low velocity impact[J]. Journal of Material Processing Technology, 2008, 201(1/2/3):425-430. https://www.sciencedirect.com/science/article/pii/S0924013607012599 [40] SHIN K B, LEE J Y, CHO S H. An experimental study of low velocity impact responses of sandwich panels for korean low floor bus[J]. Composite Structures, 2008, 84(3):228-240. doi: 10.1016/j.compstruct.2007.08.002 [41] FAN H L, ZHOU Q, YANG W, et al. An experimental study on the failure mechanisms of woven textile sandwich panels under quasi-static loading[J]. Composites:Part B, 2010, 41(8):686-692. doi: 10.1016/j.compositesb.2010.07.004 [42] FAN H L, YANG W, ZHOU Q. Experimental research of compressive responses of multi-layered woven textile sandwich panels under quasi-static loading[J]. Composites:Part B, 2011, 42(5):1151-1156. doi: 10.1016/j.compositesb.2011.03.008 [43] HALE J M, GIBSON A G, SPEAKE S D. Tensile strength testing of GRP pipes at elevated temperatures in aggressive offshore environments[J]. Journal of Composite Materials, 1998, 32(10):969-986. doi: 10.1177/002199839803201004 [44] 刘红影, 刘德勤.温度对芳纶/玻璃纤维复合材料层压板冲击性能的影响[J].玻璃钢/复合材料, 2009, 6:25-27. doi: 10.3969/j.issn.1003-0999.2009.06.006LIU Hongying, LIU Deqin. The role of temperature on impact properties of Kevlar/fiberglass composite laminates[J]. Fiber Reinforced Plastics/Composites, 2009, 6:25-27. doi: 10.3969/j.issn.1003-0999.2009.06.006 [45] 杨庆生, 杨卫.纤维复合材料损伤过程的数值模拟[J].计算力学学报, 1998, 15(2):154-160. http://www.cnki.com.cn/Article/CJFDTOTAL-JSJG802.004.htmYANG Qingsheng, YANG Wei. Numerical simulation of damage process for fiber composites[J]. Chinese Journal of Computational Mechanics, 1998, 15(2):154-160. http://www.cnki.com.cn/Article/CJFDTOTAL-JSJG802.004.htm [46] COLLOMBET F, LALBIN X, BONINI J, et al. Damage criteria for the study of impacted composite laminates[J]. Composites Science and Technology, 1998, 58(5):679-686. doi: 10.1016/S0266-3538(97)00145-0 [47] MOURA M F S F, MARQUES A T. Prediction of low velocity impact damage in carbon-epoxy laminates[J]. Composites:Part A:Applied Science and Manufacturing, 2002, 33(3):361-368. doi: 10.1016/S1359-835X(01)00119-1 [48] FATT M S H, PARK K S. Dynamic models for low velocity impact damage of composite sandwich panels:Part A:deformation[J]. Composites Structures, 2001, 52(3/4):335-351. https://www.sciencedirect.com/science/article/pii/S0263822301000265 [49] HASSAN M A, CANTWELLl W J. The low velocity impact response of an aluminum honeycomb sandwich structure[J]. Composites:Part B, 2003, 34(8):679-687. doi: 10.1016/S1359-8368(03)00089-1 [50] ABRATE S. Modeling of impacts on composite structures[J]. Composites Structures, 2001, 51(2):129-138. doi: 10.1016/S0263-8223(00)00138-0 [51] OLSSON R, MCMANUS H L. Improved theory for contact in-dentation of sandwich panels[J]. AIAA Journal, 1996, 34(6):1238-1244. doi: 10.2514/3.13218 [52] HASSAN M A, CANTWELL W J. The low velocity impact response of an aluminum honeycomb sandwich structure[J]. Composites:Part B, 2003, 34(8):679-687. doi: 10.1016/S1359-8368(03)00089-1