库仑准则下高强度混凝土的临界爆裂蒸汽压力

康亚明 贾延 罗玉财 陈静波

康亚明, 贾延, 罗玉财, 陈静波. 库仑准则下高强度混凝土的临界爆裂蒸汽压力[J]. 爆炸与冲击, 2018, 38(1): 224-232. doi: 10.11883/bzycj-2016-0305
引用本文: 康亚明, 贾延, 罗玉财, 陈静波. 库仑准则下高强度混凝土的临界爆裂蒸汽压力[J]. 爆炸与冲击, 2018, 38(1): 224-232. doi: 10.11883/bzycj-2016-0305
KANG Yaming, JIA Yan, LUO Yucai, CHEN Jingbo. Critical vapour pressure for explosive spalling of high-strength concretebased on Mohr-Coulomb criterion[J]. Explosion And Shock Waves, 2018, 38(1): 224-232. doi: 10.11883/bzycj-2016-0305
Citation: KANG Yaming, JIA Yan, LUO Yucai, CHEN Jingbo. Critical vapour pressure for explosive spalling of high-strength concretebased on Mohr-Coulomb criterion[J]. Explosion And Shock Waves, 2018, 38(1): 224-232. doi: 10.11883/bzycj-2016-0305

库仑准则下高强度混凝土的临界爆裂蒸汽压力

doi: 10.11883/bzycj-2016-0305
基金项目: 

国家自然科学基金项目 51369001

国家自然科学基金项目 51569001

详细信息
    作者简介:

    康亚明(1980—), 男, 博士, 副教授, 硕士生导师, scu.kym@foxmail.com

  • 中图分类号: O381;TU528

Critical vapour pressure for explosive spalling of high-strength concretebased on Mohr-Coulomb criterion

  • 摘要: 高强度混凝土高温爆裂概率随含水率的增大而增大,表明蒸汽压力是诱发爆裂的重要因素之一,该压力通过改变有效应力影响了强度。为定量研究蒸汽压力对强度的影响,基于莫尔-库仑准则和有效应力原理,推导了临界爆裂蒸汽压力的求解公式,并从数理角度证明了其严密性,结果表明:(1)公式物理意义明确,并与现有的研究成果和实际工程灾害一致性好;(2)理论分析尚不能完全考虑材料物理特征对爆裂的影响,还需结合模型实验开展极端高温环境下理论模型中相关系数的测定;(3)应结合火灾后建筑物不同部位构件的破坏形态,从受力状态与破坏特征两方面去分析和反馈其中的机理,完善理论分析中的不足。
  • 图  1  横截面上微孔洞面积的等效

    Figure  1.  Effective area of micro-holes on the cross section

    图  2  混凝土不受外力时的高温爆裂

    Figure  2.  High temperature burst of concrete subjected to free state

    图  3  柱中混凝土的受力特征

    Figure  3.  Stress characteristics of concrete column

    图  4  轴压约束共同作用下桩体中一点的应力状态

    Figure  4.  Stress state at a point subjected to axial compression and lateral restraint in the cylinder

    图  5  莫尔-库仑准则中的主应力关系

    Figure  5.  Relationship between the principal stress in the Mohr-coulomb criterion

    图  6  带有抗拉强度切割的莫尔-库仑包络线

    Figure  6.  Mohr-coulomb criterion envelope with cross line of tensile strength

    图  7  空间应力状态下压剪破坏时的受力图

    Figure  7.  Force diagram subjected to compression and shear failure in three-dimensional stress state

    图  8  三向均衡和不均衡受压时的挤压变形和破坏特征

    Figure  8.  Extrusion deformation and failure characteristics subjected to triaxial uniform and nonuniform compressions

  • [1] 鞠杨, 刘红彬, 田开培, 等.RPC高温爆裂的微细观孔隙结构与蒸汽压变化机制的研究[J].中国科学:技术科学, 2013, 43(2):141-152. http://www.cnki.com.cn/Article/CJFDTotal-JEXG201302022.htm

    JU Yang, LIU Hongbin, TIAN Kaipei, et al. An investigation on micropore structures and the vapor pressure mechanism of explosive spalling of RPC exposed to high temperature[J]. Science China: Technological Sciences, 2013, 43(2):141-152. http://www.cnki.com.cn/Article/CJFDTotal-JEXG201302022.htm
    [2] TERRASI G P, BISBY L, BARBEZAT M, et al. Fire behavior of thin CFRP pretensioned high-strength concrete slabs[J]. Journal of Composites for Construction, 2012, 16(4):381-394. doi: 10.1061/(ASCE)CC.1943-5614.0000271
    [3] KANÉMA M, PLIYA P, NOUMOWÉ A, et al. Spalling, thermal, and hydrous behavior of ordinary and high-strength concrete subjected to elevated temperature[J]. Journal of Materials in Civil Engineering, 2011, 23(7):921-930. doi: 10.1061/(ASCE)MT.1943-5533.0000272
    [4] 唐世斌, 唐春安, 李连崇, 等.脆性材料热-力耦合模型及热破裂数值分析方法[J].计算力学学报, 2009, 26(2):172-179. doi: 10.7511/jslx20092005

    TANG Shibin, TANG Chun'an, LI Lianchong, et al. Numerical approach on the thermo-mechanical coupling of brittle material[J]. Chinese Journal of Computational Mechanics, 2009, 26(2):172-179. doi: 10.7511/jslx20092005
    [5] 柳献, 袁勇, 叶光, 等.高性能混凝土高温爆裂的机理探讨[J].土木工程学报, 2008, 41(6):61-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tmgcxb200806009

    LIU Xian, YUAN Yong, YE Guang, et al. Investigation on the mechanism of explosive spalling of high performance concrete at elevated temperature[J]. China Civil Engineering Journal, 2008, 41(6):61-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tmgcxb200806009
    [6] 刘红彬, 鞠杨, 孙华飞, 等.活性粉末混凝土的高温爆裂及其内部温度场的试验研究[J].工业建筑, 2014, 44(11):126-130. http://www.cnki.com.cn/Article/CJFDTotal-HLJK201504019.htm

    LIU Hongbin, JU Yang, SUN Huafei, et al. Experiment on the spalling and temperature field distribution of reactive powder concrete under high temperature[J]. Industrial Construction, 2014, 44(11):126-130. http://www.cnki.com.cn/Article/CJFDTotal-HLJK201504019.htm
    [7] GUERRIERI M, FRAGOMENI S. Mechanisms of spalling of concrete panels of different geometry in hydrocarbon fire[J]. Journal of Materials in Civil Engineering, 2016, 28(12):04016164. doi: 10.1061/(ASCE)MT.1943-5533.0001680
    [8] 李荣涛, 李锡夔.混凝土中化学-热-湿-力耦合过程的数值方法[J].力学学报, 2006, 38(4):471-479. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_lxxb200604006

    LI Rongtao, LI Xikui. Mathematical model and numerical method for simulation of coupled chemo-thermo-hydro-mechanical process in concrete subjected to fire[J]. Chinese Journal of Theroretical and Applied Mechanics, 2006, 38(4):471-479. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_lxxb200604006
    [9] 石东升, 王海波, 刘曙光.影响火灾下混凝土爆裂因素的试验研究[J].内蒙古工业大学学报(自然科学版), 2007, 26(2):129-135. http://www.docin.com/p-1062062357.html

    SHI Dongsheng, WANG Haibo, LIU Shuguang. Experimental studies of factors affecting spallation of concrete subjected to fire[J]. Journal of Inner Mongolia University of Technology (Natural Science Edition), 2007, 26(2):129-135. http://www.docin.com/p-1062062357.html
    [10] 雪凯旺, 苗苗, 周健.高强混凝土高温爆裂行为改善措施的研究进展[J].硅酸盐学报, 2016, 35(10):3209-3214. http://c.wanfangdata.com.cn/periodical/gsytb/2016-10.aspx

    XUE Kaiwang, MIAO Miao, ZHOU Jian. Improvement measures of high temperature explosive spalling of high strength concrete[J]. Bulletin of The Chinese Ceramic Society, 2016, 35(10):3209-3214. http://c.wanfangdata.com.cn/periodical/gsytb/2016-10.aspx
    [11] 王里, 刘红彬, 鞠杨, 等.高强高性能混凝土高温爆裂机理研究进展[J].力学与实践, 2014, 36(4):403-412. doi: 10.6052/1000-0879-13-272

    WANG Li, LIU Hongbin, JU Yang, et al. Mechanism of explosive spalling of high strength and high performance concrete exposed to elevated temperature[J]. Mechanics in Engineering, 2014, 36(4):403-412. doi: 10.6052/1000-0879-13-272
    [12] 徐志英.岩石力学[M].北京:水利水电出版社, 1993:47-59.
    [13] 俞茂宏.岩土类材料的统一强度理论及其应用[J].岩土工程学报, 1994, 16(2):1-10. http://www.cqvip.com/QK/90854X/199812/3297812.html
    [14] 郭少华, 周绍青, 邹春伟.压缩荷载条件下岩石类材料的断裂模式研究[J].实验力学, 2008, 23(2):149-156. http://www.cnki.com.cn/Article/CJFDTOTAL-SYLX200802007.htm

    GUO Shaohua, ZHOU Shaoqing, ZOU Chunwei. Research on fracture mode of rock-type materials under compressive loading[J]. Journal of Experimental Mechanics, 2008, 23(2):149-156. http://www.cnki.com.cn/Article/CJFDTOTAL-SYLX200802007.htm
    [15] JIN Tao, YONG Yuan, LUC Taerwe. Compressive strength of self-compacting concrete during high-temperature exposure[J]. Journal of Materials in Civil Engineering, 2010, 22(10):1005-1011. doi: 10.1061/(ASCE)MT.1943-5533.0000102
    [16] 丁文龙, 曾维特, 王濡岳, 等.页岩储层构造应力场模拟与裂缝分布预测方法及应用[J].地学前缘, 2016, 23(2):63-74. http://www.cqvip.com/QK/98600X/201602/667723559.html

    DING Wenlong, ZENG Weite, WANG Ruyue, et al. Empirical strength criterion for rock mass and its application[J]. Earth Science Frontiers, 2016, 23(2):63-74. http://www.cqvip.com/QK/98600X/201602/667723559.html
    [17] 昝月稳, 俞茂宏, 王思敬.岩石非线性统一强度准则[J].岩石力学与工程学报, 2002, 21(10):1435-1441. doi: 10.3321/j.issn:1000-6915.2002.10.001

    ZAN Yuewen, YU Maohong, WANG Sijing. Nonlinear unified strength criterion of rock[J]. Chinese Journal of Rock Mechanics and Geotechnical Engineering, 2002, 21(10):1435-1441. doi: 10.3321/j.issn:1000-6915.2002.10.001
    [18] 郑安兴, 罗先启.压剪应力状态下岩石复合型断裂判据的研究[J].岩土力学, 2015, 36(7):1892-1898. https://www.wenkuxiazai.com/doc/21f1cb0bad51f01dc381f16f.html

    ZHENG Anxing, LUO Xianqi. Research on combined fracture criterion of rock under compression-shear stress[J]. Rock and Soil Mechanics, 2015, 36(7):1892-1898. https://www.wenkuxiazai.com/doc/21f1cb0bad51f01dc381f16f.html
    [19] 刘泉声, 魏莱, 刘学伟, 等.基于Griffith强度理论的岩石裂纹起裂经验预测方法研究[J].岩石力学与工程学报, 2017, 36 (7):1561-1569. http://rss.cnki.net/kns/rss.aspx?Journal=YSLX&Virtual=knavi

    LIU Quansheng, WEI Lai, LIU Xuewei, et al. A revised empirical method for predicting crack initiation based on Griffith strength criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(7):1561-1569. http://rss.cnki.net/kns/rss.aspx?Journal=YSLX&Virtual=knavi
    [20] TRAVIS Q B, ASCE M, MOBASHER B. Correlation of elastic modulus and permeability in concrete subjected to elevated temperatures[J]. Journal of Materials in Civil Engineering, 2010, 22(7):735-740. doi: 10.1061/(ASCE)MT.1943-5533.0000074
  • 加载中
图(8)
计量
  • 文章访问数:  6165
  • HTML全文浏览量:  1760
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-17
  • 修回日期:  2017-03-08
  • 刊出日期:  2018-01-25

目录

    /

    返回文章
    返回