点火条件对密闭管道内预混氢气/空气燃爆特性的影响

孙从煌 曲艳东 刘万里 翟诚

孙从煌, 曲艳东, 刘万里, 翟诚. 点火条件对密闭管道内预混氢气/空气燃爆特性的影响[J]. 爆炸与冲击, 2018, 38(3): 622-631. doi: 10.11883/bzycj-2016-0309
引用本文: 孙从煌, 曲艳东, 刘万里, 翟诚. 点火条件对密闭管道内预混氢气/空气燃爆特性的影响[J]. 爆炸与冲击, 2018, 38(3): 622-631. doi: 10.11883/bzycj-2016-0309
SUN Conghuang, QU Yandong, LIU Wanli, ZHAI Cheng. Influence of different ignition conditions on deflagration characteristics of a premixed mixture of H2 and air in a closed pipe[J]. Explosion And Shock Waves, 2018, 38(3): 622-631. doi: 10.11883/bzycj-2016-0309
Citation: SUN Conghuang, QU Yandong, LIU Wanli, ZHAI Cheng. Influence of different ignition conditions on deflagration characteristics of a premixed mixture of H2 and air in a closed pipe[J]. Explosion And Shock Waves, 2018, 38(3): 622-631. doi: 10.11883/bzycj-2016-0309

点火条件对密闭管道内预混氢气/空气燃爆特性的影响

doi: 10.11883/bzycj-2016-0309
基金项目: 

国家自然科学基金项目 11302094

辽宁省高等学校优秀人才项目 LJQ2014063

辽宁省科技厅预研项目 SY201603

辽宁工业大学教师科研启动基金项目 X201403

详细信息
    作者简介:

    孙从煌(1990-), 男, 硕士研究生

    通讯作者:

    曲艳东, quyandong@lnut.edu.cn

  • 中图分类号: O381;TD712

Influence of different ignition conditions on deflagration characteristics of a premixed mixture of H2 and air in a closed pipe

  • 摘要: 基于流体动力学软件Fluent,开展数值模拟,研究点火位置(距管左端壁面100、200和500 mm)、点火温度(1 000、1 500和2 000 K)和点火面积(管左端壁面处半径为50、35和20 mm的点火域)等点火条件对1 000 mm密闭管道中预混氢气/空气(H2/air)燃爆特性的影响。研究表明:点火位置距管左端壁面越远,中间节点处温度越高,温升越快;不同点火温度下管内最高温升速率基本同步,且提高点火温度,使得燃烧反应更剧烈,能提高管内气体温升速率,但却降低管内的压力峰值;点火面积越小,预混H2/air燃烧前期温升越快。当采用半径为35 mm的点火域和点火位置距管左端壁面100 mm的点火方式时,预混H2/air燃爆的各项参数相对较高。不同点火条件对密闭管内气体的动能和内能的影响规律类似于其对管内气体的流速和温度的影响规律,而对涡量的影响不明显。
  • 图  1  密闭管道的几何模型

    Figure  1.  Geometric model of the closed pipe

    图  2  不同时刻预混H2/air的燃爆过程及其火焰阵面结构图

    Figure  2.  Deflagration process and flame front structures of H2/air pre-mixed gases at different times

    图  3  管内不同位置观测点的温度时程曲线

    Figure  3.  Temperature-time curves of different observation points in the closed pipe

    图  4  不同点火条件下管内最高温度的时程曲线

    Figure  4.  Maximum temperature-time curves of the closed pipe under different ignition conditions

    图  5  不同点火条件下管内最大压力时程曲线

    Figure  5.  Peak pressure-time curves of the closed pipe under different ignition conditions

    图  6  不同点火条件下中间测点的温度时程曲线

    Figure  6.  Temperature-time curves of the middle observation point under different ignition conditions

    图  7  不同点火条件下中间测点的压力时程曲线

    Figure  7.  Pressure-time curves of the middle observation point under different conditions

    图  8  不同点火条件下火焰前锋位置和速度时程曲线

    Figure  8.  Location- and velocity-time curves of flame front under different ignition conditions

    图  9  不同点火条件下中间测点处气流速度曲线

    Figure  9.  Airflow velocity-time curves of the middle observation point under different ignition conditions

    图  10  不同点火条件下动能时程曲线

    Figure  10.  Kinetic energy-time curves under different ignition conditions

    图  11  不同点火条件下内能变化时程曲线

    Figure  11.  Internal energy-time curves under different ignition conditions

    图  12  管内涡量运动及最大涡量的变化情况

    Figure  12.  Movement of vorticity and change of maximum vorticity

    图  13  不同点火条件下管内中间节点处涡量时程曲线

    Figure  13.  Vorticity-time curves of the middle node in the closed pipe under different ignition conditions

    表  1  密闭管道内各燃料组分和初始条件[15]

    Table  1.   Fuel components and initial conditions in the closed pipe[15]

    Fluid area Mass fraction of gas component Initial temperature/K Initial pressure/kPa
    H2 O2 N2 H2O
    Fuel area 0.022 62 0.217 2 0.76 0 300 101.325
    Ignition area 0 0.046 0.76 0.213 1 500 101.325
    下载: 导出CSV
  • [1] ZHU X C, SFORZA L, RANADIVE T, et al. Experimental and numerical study of flame kernel formation processes of propane-air mixture in a pressurized combustion vessel[J]. SAE International Journal of Engines, 2016, 9(3):1494-1511. https://core.ac.uk/display/80335543
    [2] 潘振华, 范宝春, 归明月.T型管内流动气体中爆轰绕射过程的数值模拟[J].爆炸与冲击, 2014, 34(6):709-715. doi: 10.11883/1001-1455(2014)06-0709-07

    PAN Zhenhua, FAN Baochun, GUI Mingyue. Numerical investigation on evolution of detonation diffraction in moving gas inside a T-shaped channel[J]. Explosion and Shock Waves, 2014, 34(6):709-715. doi: 10.11883/1001-1455(2014)06-0709-07
    [3] 赵焕娟, LEE J H S, 张英华, 等.边界条件对甲烷预混气爆轰特性的影响[J].爆炸与冲击, 2017, 37(2):201-207. doi: 10.11883/1001-1455(2017)02-0201-07

    ZHAO Huanjuan, LEE J H S, ZHANG Yinghua, et al. Effects of boundary conditions on premixed CH4+2O2 detonation characteristics[J]. Explosion and Shock Waves, 2017, 37(2):201-207. doi: 10.11883/1001-1455(2017)02-0201-07
    [4] CLANET C, SEARBY G. On the "Tulip flame" phenomenon[J]. Combustion and Flame, 1996, 105(1/2):225-238. https://www.sciencedirect.com/science/article/pii/0010218095001956
    [5] XIAO Huahua, SUN Jinhua, CHEN Peng. Experimental and numerical study of premixed hydrogen/air flame propagation in a combustion chamber[J]. Journal of Hazardous Materials, 2014, 268(3):132-139. https://www.sciencedirect.com/science/article/pii/S0304389413009928
    [6] PONIZY B, CLAVERIE A, VEYSSIERE B. Tulip flame:The mechanism of flame front inversion[J]. Combustion and Flame, 2014, 161(12):3051-3062. doi: 10.1016/j.combustflame.2014.06.001
    [7] GROGAN K P, IHME M. Weak and strong ignition of hydrogen/oxygen mixtures in shock-tube systems[J]. Proceedings of the Combustion Institute, 2015, 35(2):2181-2189. doi: 10.1016/j.proci.2014.07.074
    [8] GAO Wei, ZHONG Shengjun, MIAO Nan, et al. Effect of ignition on the explosion behavior of 1-Octadecanol/air mixtures[J]. Powder Technology, 2013, 241(3):105-114. https://www.sciencedirect.com/science/article/pii/S0032591013001812
    [9] XIAO Huahua, DUAN Qiangling, JIANG Lin, et al. Effects of ignition location on premixed hydrogen/air flame propagation in a closed combustion tube[J]. International Journal of Hydrogen Energy, 2014, 39(16):8557-8563. doi: 10.1016/j.ijhydene.2014.03.164
    [10] 郑立刚, 吕先舒, 郑凯, 等.点火源位置对甲烷-空气爆燃超压特性的影响[J].化工学报, 2015, 66(7):2749-2756. http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201507051.htm

    ZHENG Ligang, LV Xianshu, ZHENG Kai, et al. Influence of ignition position on overpressure of premixed methane-air deflagration[J]. CIESC Journal, 2015, 66(7):2749-2756. http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201507051.htm
    [11] KINDRACK J, KOBIERA A, RARATA G, et al. Influence of ignition position and obstacles on explosion development in methane-air mixture in closed vessels[J]. Journal of Loss Prevention in the Process Industries, 2007, 20(4/5/6):551-561. https://www.sciencedirect.com/science/article/pii/S095042300700085X
    [12] PARK D J, LEE Y S. Experimental investigation of explosion pressures and flame propagations by wall obstruction ratios and ignition positions[J]. Korean Journal of Chemical Engineering, 2012, 29(2):139-144. doi: 10.1007/s11814-011-0159-5
    [13] 李润之, 司荣军.低温环境下甲烷爆炸流场特性模拟[J].爆炸与冲击, 2015, 35(6):901-906. doi: 10.11883/1001-1455(2015)06-0901-06

    LI Runzhi, SI Rongjun. Simulation study of flow field characteristics[J]. Explosion and Shock Waves, 2015, 35(6):901-906. doi: 10.11883/1001-1455(2015)06-0901-06
    [14] XIAO Huahua, WANG Qingsong, HE Xuechao, et al. Experimental study on the behaviors and shape changes of premixed hydrogen-air flames propagation in horizontal duct[J]. International Journal of Hydrogen Energy, 2011, 36(10):6325-6336. doi: 10.1016/j.ijhydene.2011.02.049
    [15] 孙从煌. 爆炸反应管的研制及管内气体燃爆特性研究[D]. 锦州: 辽宁工业大学, 2017: 32-35.
    [16] 范宝春.两相系统的燃烧、爆炸和爆轰[M].北京:国防工业出版社, 1998:5-8.
    [17] CICCARELLI G, DOROFEEV S. Flame acceleration and transition detonation in ducts[J]. Progress in Energy and Combustion Science, 2008, 34(4):499-550. doi: 10.1016/j.pecs.2007.11.002
    [18] 孙胜, 陈松, 吴超.尾矿库污染物传输过程的数值仿真研究及其经验[J].铁道科学与工程学报, 2012, 9(1):36-41. http://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201201008.htm

    SUN Sheng, CHEN Song, WU Chao. Research on the numerical simulation of the pollutant transferring of tailings and experiences[J]. Journal of Railway Science and Engineering, 2012, 9(1):36-41. http://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201201008.htm
    [19] 陈先锋, 陈明, 张庆明, 等.瓦斯爆炸火焰精细结构及动力学特性的实验[J].煤炭学报, 2010, 35(2):246-249. http://www.cqvip.com/QK/96550X/201002/33014577.html

    CHEN Xianfeng, CHEN Ming, ZHANG Qingming, et al. Experimental investigation of gas explosion microstructure and dynamic characteristics in a semi-vented pipe[J]. Journal of China Coal Society, 2010, 35(2):246-249. http://www.cqvip.com/QK/96550X/201002/33014577.html
    [20] BI Mingshu, DONG Chengjie, ZHOU Yihui. Numerical simulation of premixed methane-air deflagration in large L/D closed pipes[J]. Applied Thermal Engineering, 2012, 40:337-342. doi: 10.1016/j.applthermaleng.2012.01.065
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  5075
  • HTML全文浏览量:  1741
  • PDF下载量:  242
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-20
  • 修回日期:  2017-01-16
  • 刊出日期:  2018-05-25

目录

    /

    返回文章
    返回