A finite difference method of three characteristic lines of two-dimensional non-isentropic steady flow of cylindrical explosive underwater explosion
-
摘要: 针对二维定常可压缩超声速非等熵柱状流,提出一种特征线差分解法,通过在沿马赫线的相容方程中添加沿流线的熵变项以描述非等熵效应,得到等熵流和非等熵流均适用的三族特征线方程组。根据水下爆炸近场特点,建立无限长柱状装药的定常模型,将三族特征线方程组用有限差分法离散求解,通过构造合适的网格保证计算格式可以数值上收敛,由此编制程序并计算几种柱状炸药的水下爆炸近场冲击波。对比有限元模拟结果和实验结果发现,特征线差分法可以比较准确地捕捉冲击波形状并计算冲击波后流场,从而验证了所提出的三族特征线差分法的准确性。Abstract: In the present paper, we proposed a two-dimensional finite difference method (FDM) of characteristic lines to address problems of the non-isentropic steady flow of cylindrical explosive underwater explosion. This method describes the non-isentropic effect by adding an entropy-related variable along the flow line to the pressure-related equation along the Mach line, so that both the isentropic flow and the non-isentropic flow can be described in the same equations of the characteristics. Based on the features of the near-field shock wave we firstly modeled the underwater explosion with an infinitely long cylindrical explosive, then discretized those equations using this finite difference method and constructed an appropriate grid to ensure the numerical convergence, and finally calculated the underwater near-field shock wave for several explosives by programming. The numerical examples showed that the results of this method are consistent with those of the commercial finite element software AUTODYN and those of experiments, suggesting that the FDM of characteristics can capture the shock wave front with relatively high accuracy, and confirming that this method is applicable to solving problems in cylindrical explosive underwater explosion.
-
表 1 几种炸药的爆轰产物JWL状态方程参数
Table 1. Parameters of JWL equation of state for several explosives
炸药 CJ参数 JWL状态方程参数 ρ0/(g·cm-3) D/(km·s-1) pCJ/GPa A/GPa B/GPa R1 R2 ω PETN 0.88 0.880 5.170 6.2 348.62 11.29 7.0 2.0 0.24 PETN 1.26 1.260 6.540 14.0 573.10 20.16 6.0 1.8 0.28 PETN 1.50 1.500 7.450 22.0 625.30 23.29 5.25 1.6 0.28 PETN 1.77 1.770 8.300 33.5 617.05 16.93 4.4 1.2 0.25 TNT 1.630 6.930 21.0 373.77 3.75 4.15 0.9 0.35 SEP 1.310 6.970 15.9 372.00 3.48 4.59 1.06 0.29 表 2 水的Mie-Grüneison状态方程
Table 2. Mie-Grüneison equation of state of water
ρ0/(g·cm-3) e0/(J·kg-3) pCJ/GPa A1/GPa A2/GPa A3/GPa B0 B1 T1/GPa T2/GPa 1.000 361.9 6.2 2.2 9.54 14.57 0.28 0.28 2.2 0 -
[1] COLE R H. Underwater explosions[M]. New Jersy: Princeton University Press, 1948:3-13. [2] STEINBERG D J. Spherical explosions and the equation of state of water: UCID-20974[R]. Livermore, USA: Lawrence Livermore National Laboratory, 1987. https://www.researchgate.net/publication/236565135_Spherical_explosions_and_the_equation_of_state_of_water [3] 池家春, 马冰.TNT/RDX(40/60)炸药球水中爆炸波研究[J].高压物理学报, 1999, 13(3):199-204. doi: 10.11858/gywlxb.1999.03.008CHI Jiachun, MA Bing. Underwater explosion wave by a spherical charge of composition B-3[J].Chinese Journal of High Pressure Physics, 1999, 13(3):199-204. doi: 10.11858/gywlxb.1999.03.008 [4] ITOH S, SUZUKI O, NAGANO S, et al. Investigations of fundamental properties of underwater shock waves by high-speed photography[C]// 21st International Congress on: High-Speed Photography and Photonics. International Society for Optics and Photonics, 1995: 916-928. http://www.researchgate.net/publication/241230429_Investigations_of_fundamental_properties_of_underwater_shock_waves_by_high-speed_photography [5] 赵继波, 谭多望, 李金河, 等.TNT药柱水中爆炸近场压力轴向衰减规律[J].爆炸与冲击, 2008, 28(6):539-543. doi: 10.11883/1001-1455(2008)06-0539-05ZHAO Jibo, TAN Duowang, LI Jinhe, et al. Axial pressure damping of cylindrical TNT charges in the near underwater-explosion field[J]. Explosion and Shock Waves, 2008, 28(6):539-543. doi: 10.11883/1001-1455(2008)06-0539-05 [6] 张振华, 朱锡, 白雪飞.水下爆炸冲击波的数值模拟研究[J].爆炸与冲击, 2004, 24(2):182-188. http://www.bzycj.cn/CN/abstract/abstract9940.shtmlZHANG Zhenhua, ZHU Xi, BAI Xuefei. The study on numerical simulation of underwater blast wave[J]. Explosion and Shock Waves, 2004, 24(2):182-188. http://www.bzycj.cn/CN/abstract/abstract9940.shtml [7] 方斌, 朱锡, 张振华, 等.水下爆炸冲击波数值模拟中的参数影响[J].哈尔滨工程大学学报, 2005, 26(4):419-424. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgcdxxb200504001FANG Bin, ZHU Xi, ZHANG Zhenhua, et al. Effect of parameters in numerical simulation of underwater shock wave[J]. Journal of Harbin Engineering University, 2005, 26(4):419-424. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgcdxxb200504001 [8] 胡毅亭, 贾宪振, 饶国宁, 等.水下爆炸冲击波和气泡脉动的数值模拟研究[J].舰船科学技术, 2009, 31(2):134-140. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jckxjs200902032HU Yiting, JIA Xianzhen, RAO Guoning, et al. Numerical study of underwater explosion shock wave and bubble pulse[J]. Ship Science and Technology, 2009, 31(2):134-140. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jckxjs200902032 [9] 刘科种, 徐更光, 辛春亮, 等.AUTODYN水下爆炸数值模拟研究[J].爆破, 2009, 26(3):18-21. http://www.cqvip.com/qk/96961X/200903/31592781.htmlLIU Kezhong, XU Gengguang, XIN Chunliang, et al. Research on numerical simulation in underwater explosion by AUTODYN[J]. Blasting, 2009, 26(3):18-21. http://www.cqvip.com/qk/96961X/200903/31592781.html [10] 辛春亮, 秦健, 刘科种, 等.基于LS-DYNA软件的水下爆炸数值模拟研究[J].弹箭与制导学报, 2008, 28(3):156-158. http://www.cqvip.com/QK/97591A/200803/27650534.htmlXIN Chunliang, QIN Jian, LIU Kezhong, et al. Research on UNDEX numerical simulation based on LS-DYNA[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 28(3):156-158. http://www.cqvip.com/QK/97591A/200803/27650534.html [11] 汪俊, 刘建湖, 李玉节.加筋圆柱壳水下爆炸动响应数值模拟[J].船舶力学, 2006, 10(2):126-137. http://cdmd.cnki.com.cn/Article/CDMD-10487-2009033857.htmWANG Jun, LIU Jianhu, LI Yujie. Numerical simulation of dynamic response of ring-stiffened cylindrical shell subjected to underwater explosions[J]. Journal of Ship Mechanics, 2006, 10(2):126-137. http://cdmd.cnki.com.cn/Article/CDMD-10487-2009033857.htm [12] JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1):202-228. doi: 10.1006/jcph.1996.0130 [13] ZHANG X, SHU C W. On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes[J]. Journal of Computational Physics, 2010, 229(23):8918-8934. doi: 10.1016/j.jcp.2010.08.016 [14] LIU M B, LIU G R, LAM K Y, et al. Smoothed particle hydrodynamics for numerical simulation of underwater explosion[J]. Computational Mechanics, 2003, 30(2):106-118. doi: 10.1007/s00466-002-0371-6 [15] ZHANG A, YANG W S, HUANG C, et al. Numerical simulation of column charge underwater explosion based on SPH and BEM combination[J]. Computers & Fluids, 2013, 71:169-178. http://www.sciencedirect.com/science/article/pii/S004579301200401X [16] SUSSMAN M, SMEREKA P, OSHER S. A level set approach for computing solutions to incompressible two-phase flow[J]. Journal of Computational Physics, 1994, 114(1):146-159. doi: 10.1006/jcph.1994.1155 [17] 师华强, 汪玉, 宗智, 等.近水面水下爆炸二维Level-set数值模拟[J].计算力学学报, 2010, 27(3):409-414. doi: 10.7511/jslx20103005SHI Huaqiang, WANG Yu, ZONG Zhi, et al. 2D numerical simulation of underwater explosion near free surface based on level-set method[J]. Chinese Journal of Computational Mechanics, 2010, 27(3):409-414. doi: 10.7511/jslx20103005 [18] ANDERSON J D. Modern compressible flow with historical perspective[M]. 2nd ed. New York: McGraw-Hill, 1990:307-311. [19] FLETCHER C A. Computational techniques for fluid dynamics[M]. Springer-Verlag, 1992:280-281. [20] CHOU P C, HUANG S L, KARPP R R. Numerical calculation of blast waves by the method of characteristics[J]. AIAA Journal, 1967, 5(4):618-623. doi: 10.2514/3.4038 [21] RAKICH J, KUTLER P. Comparison of characteristics and shock capturing methods with application to the space shuttle vehicle[C]//10th Aerospace Sciences Meeting, 1972: 191. http://www.researchgate.net/publication/23926144_Comparison_of_characteristics_and_shock_capturing_methods_with_application_to_the_space_shuttle_vehicle [22] ZUCROW M J, HOFFMAN J D. 气体动力学(上册)[M]. 王汝涌, 吴宗真, 吴宗善, 等译. 北京: 国防工业出版社, 1984: 431-432. [23] 李晓杰, 张程娇, 闫鸿浩, 等.水下爆炸近场非均熵流的特征线差分解法[J].爆炸与冲击, 2012, 32(6):604-608. doi: 10.11883/1001-1455(2012)06-0604-05LI Xiaojie, ZHANG Chengjiao, YAN Honghao, et al. Difference method of characteristics in isentropic flow of underwater explosion in near-field region[J]. Explosion and Shock Waves, 2012, 32(6):604-608. doi: 10.11883/1001-1455(2012)06-0604-05 [24] HARTREE D R. Some practical methods of using characteristics in the calculation of non-steady compressible flow: AECU-2713[R]. Cambridge: Harvard University, 1953. https://www.researchgate.net/publication/236480548_Some_practical_methods_of_using_characteristics_in_the_calculation_of_non-steady_compressible_flow [25] STEBNOVSKⅡ S V, CHERNOBAEV N N. Initial stage of an underwater explosion of cylindrical charges with foliated cases[J]. Combustion, Explosion and Shock Waves, 1982, 18(3):358-362. doi: 10.1007/BF00783052 [26] 李晓杰, 王金相, 闫鸿浩, 等.基于Laval喷管的圆管爆轰驱动近似解[J].工程爆破, 2003, 9(4):7-9. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCWL199800001021.htmLI Xiaojie, WANG Jinxiang, YAN Honghao, et al. The approximate solution of pipe driven by detonation based on the theory of de laval nozzle[J]. Engineering Blasting, 2003, 9(4):7-9. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCWL199800001021.htm [27] 李晓杰, 赵春风.基于通用炸药状态方程分析飞板运动规律的特征线法[J].爆炸与冲击, 2012, 32(3):237-242. doi: 10.11883/1001-1455(2012)03-0237-06LI Xiaojie, ZHAO Chunfeng. Characteristic curve method for analyzing movement of flyer plate based on universal equation of state of explosive[J]. Explosion and Shock Waves, 2012, 32(3):237-242. doi: 10.11883/1001-1455(2012)03-0237-06 [28] 周清, 张云海, 毛允波.典型民用建筑内爆炸波传播机理[J].山东科技大学学报(自然科学版), 2009, 28(6):36-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdkjdxxb200906007ZHOU Qing, ZHANG Yunhai, MAO Yunbo. The spreading mechanism of explosion waves in typical civil building[J]. Journal of Shandong University of Science and Technology (Natural Science), 2009, 28(6):36-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdkjdxxb200906007 [29] ANSYS Inc. ANSYS Autodyn user manual, release 13.0[M].ANSYS Inc., 2010. [30] ZUCROW M J, HOFFMAN J D. 气体动力学(下册)[M]. 魏叔如, 吴宗善, 王汝涌, 等译. 北京: 国防工业出版社, 1984: 143-144.