楔形炸药窗口材料中的斜激波特性

张涛 谷岩 赵继波 刘雨生 伍星

张涛, 谷岩, 赵继波, 刘雨生, 伍星. 楔形炸药窗口材料中的斜激波特性[J]. 爆炸与冲击, 2018, 38(3): 549-554. doi: 10.11883/bzycj-2016-0318
引用本文: 张涛, 谷岩, 赵继波, 刘雨生, 伍星. 楔形炸药窗口材料中的斜激波特性[J]. 爆炸与冲击, 2018, 38(3): 549-554. doi: 10.11883/bzycj-2016-0318
ZHANG Tao, GU Yan, ZHAO Jibo, LIU Yusheng, WU Xing. Shock wave property on interface of wedge explosive and LiF window[J]. Explosion And Shock Waves, 2018, 38(3): 549-554. doi: 10.11883/bzycj-2016-0318
Citation: ZHANG Tao, GU Yan, ZHAO Jibo, LIU Yusheng, WU Xing. Shock wave property on interface of wedge explosive and LiF window[J]. Explosion And Shock Waves, 2018, 38(3): 549-554. doi: 10.11883/bzycj-2016-0318

楔形炸药窗口材料中的斜激波特性

doi: 10.11883/bzycj-2016-0318
详细信息
    作者简介:

    张涛(1988-), 男, 硕士, 助理研究员

    通讯作者:

    伍星, wxcaep@163.com

  • 中图分类号: O381

Shock wave property on interface of wedge explosive and LiF window

  • 摘要: 采用二维不定常流理论中的极曲线方法,对冲击波进入楔形受试炸药/LiF窗口界面的冲击波波后流场状态进行理论分析,同时采用流体动力学软件LS-DYNA对模型的波后流场状态进行数值模拟。结果表明,对于所研究的模型,一维平面正冲击波进入楔形受试炸药/LiF窗口界面时,由于斜激波的存在,波后粒子运动方向发生偏转,偏转角为3.3°。数值模拟结果表明,在相同模型条件下,冲击波波后粒子偏转角在2.77°~3.03°之间。二者的差异源于极曲线理论中未考虑稀疏波的影响。
  • 图  1  实验装置和计算模型示意图

    Figure  1.  Sketch of experiment setup and calculation model

    图  2  冲击波前后炸药和LiF中的速度矢量

    Figure  2.  Velocity vector before and after shock in explosives and LiF

    图  3  计算模型

    Figure  3.  Calculation model

    图  4  楔形炸药/LiF窗口界面中不同位置波后粒子速度的垂直分量和水平分量

    Figure  4.  Particle velocity in vertical and horizontal direction after shock in the interface of wedge-shaped explosive and LiF window

    图  5  楔形炸药/LiF窗口界面中波后粒子速度示意

    Figure  5.  Particle velocity in the interface of wedge-shaped explosive and LiF window

    表  1  JO-9159和JBO-9021炸药爆轰产物状态方程参数

    Table  1.   EOS parameters of detonation products of JO-9159 and JBO-9021

    炸药A/GPaB/GPaR1R2ωE/(GJ·m-3)V0
    JO-9159880.718.364.621.320.3810.400.543
    JBO-9021613.018.581.094.321.790.210.1
    下载: 导出CSV

    表  2  JBO-9021的点火增长模型参数

    Table  2.   Parameters of ignition and growth model for JBO-9021

    I/s-1acbxG1/(Pa-1·s-1)c
    4×10120.020.6677.00.090.667
    dyefG2/(Pa-3·s-1)z
    0.1110.3331.03×10-263.0
    下载: 导出CSV

    表  3  JBO-9021未反应炸药状态方程参数

    Table  3.   EOS parameters of unreacted JBO-9021

    A/TPaB/GPaR1R2ωE0/(GJ·m-3)V0
    77.810-5.03111.31.130.88424.90.543
    下载: 导出CSV

    表  4  钨合金和LiF的状态方程参数

    Table  4.   EOS parameters of tungsten alloy and LiF

    材料ρ0/(g·cm-3)C/(km·s-1)E0/(GJ·m-3)S1S2S3γ0a
    钨合金19.204.02801.243001.540
    LiF2.645.14801.358001.690
    下载: 导出CSV

    表  5  LiF窗口中不同位置的波后流场信息

    Table  5.   Flow field at different positions after shock wave in LiF window

    探针uv/(km·s-1)uh/(km·s-1)u/(km·s-1)θ′/(°)
    12.030.1072.0333.03
    22.050.1032.0532.88
    32.070.1002.0722.77
    42.050.1022.0532.85
    下载: 导出CSV
  • [1] VANDERSALL K S, TARVER C M, GARCIA F, et al. Shock initiation experiments on PBX9501 explosive at 150 ℃ for ignition and growth modeling[J]. AIP Conference Proceedings, 2006, 845(1):1127-1130. https://www.researchgate.net/profile/Craig_Tarver/publication/253961662_Shock_Initiation_Experiments_on_PBX9501_Explosive_at_150C_for_Ignition_and_Growth_Modeling/links/0c96053cd54751647b000000.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail
    [2] SEITZ W L, STACY H L, ENGELKE R, et al. Detonation reaction zone structure of PBX9502[C]//Proceedings of the Ninth Symposium (International) on Detonation. Portland, Orgegen, 1989: 113291.
    [3] 张涛, 谷岩, 赵继波, 等.新型高能钝感炸药JBO-9X在较高冲击压力下冲击起爆过程的实验研究[J].火炸药学报, 2016, 39(1):28-33. http://www.cnki.com.cn/Article/CJFDTOTAL-BGXB201601005.htm

    ZHANG Tao, GU Yan, ZHAO Jibo, et al. Experimental study on shock initiation process of a new insensitive high explosive JBO-9X under high impact pressure[J]. Chinese Journal of Explosives & Propellants, 2016, 39(1):28-33. http://www.cnki.com.cn/Article/CJFDTOTAL-BGXB201601005.htm
    [4] CAMPBELL A W, DAVIS W C, TRAVIS J R. Shock initiation of detonation in liquid explosives[J]. The Physics of Fluids, 1961, 4(4):498-510. doi: 10.1063/1.1706353
    [5] CHIDESTER S K, THOMPSON D G, VANDERSALL K S, et al. Shock initiation experiments on PBX 9501 explosive at pressures below 3 GPa with associated ignition and growth modeling[J]. AIP Conference Proceedings, 2007, 955(1):903-906. https://digital.library.unt.edu/ark:/67531/metadc898062
    [6] GUSTAVSEN R L, SHEFFIELD S A, ALCON R R, et al. Embedded electromagnetic gauge measurements and modeling of shock initiation in the TATB based explosives LX-17 and PBX 9502[J]. AIP Conference Proceedings, 2002, 620(1):1019-1022. http://adsabs.harvard.edu/abs/2002AIPC..620.1019G
    [7] BOUYER V, HEBERT P, DOUCET M, et al. Experimental measurements of the chemical reaction zone of TATB and HMX based explosives[J]. AIP Conference Proceedings, 2012, 1426(1):209-212. http://absimage.aps.org/image/SHOCK11/MWS_SHOCK11-2011-000248.pdf
    [8] ОРЛЕНКО Л П. 爆炸物理学[M]. 孙承纬, 译. 北京: 科学出版社, 2011: 88.
    [9] TARVER C M, FORBES J W, GARCIA F, et al. Manganin gauge and reactive flow modeling study of the shock initiation of PBX 9501[J]. AIP Conference Proceedings, 2002, 620(1):1043-1046. https://www.researchgate.net/publication/236561084_Manganin_Gauge_and_Reactive_Flow_Modeling_Study_of_the_Shock_Initiation_of_PBX_9501
    [10] 张宝坪, 张庆明, 黄风雷.爆轰物理学[M].北京:兵器工业出版社, 2001.
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  5035
  • HTML全文浏览量:  1687
  • PDF下载量:  292
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-18
  • 修回日期:  2017-04-01
  • 刊出日期:  2018-05-25

目录

    /

    返回文章
    返回