高应变率下多孔未极化PZT95/5铁电陶瓷的非线性力学行为

李成华 蒋招绣 王贝壳 张振 王永刚

李成华, 蒋招绣, 王贝壳, 张振, 王永刚. 高应变率下多孔未极化PZT95/5铁电陶瓷的非线性力学行为[J]. 爆炸与冲击, 2018, 38(4): 707-715. doi: 10.11883/bzycj-2016-0329
引用本文: 李成华, 蒋招绣, 王贝壳, 张振, 王永刚. 高应变率下多孔未极化PZT95/5铁电陶瓷的非线性力学行为[J]. 爆炸与冲击, 2018, 38(4): 707-715. doi: 10.11883/bzycj-2016-0329
LI Chenghua, JIANG Zhaoxiu, WANG Beiqiao, ZHANG Zhen, WANG Yonggang. Nonlinear mechanical response of PZT95/5 ferroelectric ceramics under high strain rate loading[J]. Explosion And Shock Waves, 2018, 38(4): 707-715. doi: 10.11883/bzycj-2016-0329
Citation: LI Chenghua, JIANG Zhaoxiu, WANG Beiqiao, ZHANG Zhen, WANG Yonggang. Nonlinear mechanical response of PZT95/5 ferroelectric ceramics under high strain rate loading[J]. Explosion And Shock Waves, 2018, 38(4): 707-715. doi: 10.11883/bzycj-2016-0329

高应变率下多孔未极化PZT95/5铁电陶瓷的非线性力学行为

doi: 10.11883/bzycj-2016-0329
基金项目: 

国家自然科学基金项目 11272164

国家自然科学基金项目 11472142

详细信息
    作者简介:

    李成华(1990-), 男, 硕士研究生

    通讯作者:

    王永刚, wangyonggang@nbu.edu.cn

  • 中图分类号: O347.4

Nonlinear mechanical response of PZT95/5 ferroelectric ceramics under high strain rate loading

  • 摘要: 采用添加造孔剂的方法制备了4种不同孔隙率的未极化PZT95/5铁电陶瓷。采用基于超高速相机与数字图像相关性方法的试样全场应变测量技术以及分离式霍普金森压杆(SHPB)技术,对多孔未极化PZT95/5铁电陶瓷进行高应变率单轴压缩实验研究。全场应变测量结果显示:轴向应变仅在试样中部分布较均匀,将该区域的平均应变作为应力-应变关系中的试样应变测量值较为合理,而由SHPB原理计算的试样应变值明显偏大,需要摒弃或修正传统的SHPB数据处理方法。通过波形整形技术实现了恒应变率加载,弱化了径向惯性效应的影响,揭示出多孔未极化PZT95/5铁电陶瓷的压缩强度具有显著的应变率效应。通过分析试样轴向应变和径向应变随着加载应力的变化,阐明多孔未极化PZT95/5铁电陶瓷的非线性变形行为的物理机制是畴变和相变共同作用,并发现畴变临界应力和相变临界应力都随着应变率升高而增大。保持加载应变率不变,讨论了孔隙率对多孔未极化PZT95/5铁电陶瓷动态力学行为的影响,发现随着孔隙率的升高,动态压缩强度呈非线性衰减,而畴变临界应力和相变临界应力则基本呈线性衰减。
  • 图  1  具有不同孔隙率的未极化PZT95/5铁电陶瓷的SEM形貌

    Figure  1.  SEM micrographs of unpoled PZT 95/5 ferroelectric ceramics with different porosities

    图  2  多孔未极化PZT95/5铁电陶瓷内微孔洞SEM图像

    Figure  2.  SEM image of spherical pore in porous unpoled PZT95/5 ferroelectric ceramics

    图  3  DIC全场应变测试系统与SHPB系统结合

    Figure  3.  Schematic of the SHPB and DIC systems

    图  4  应变片所采集的原始电压信号

    Figure  4.  Voltage profiles from strain gauges

    图  5  试样轴向应变分布云图

    Figure  5.  Contours of specimen's axial strain distribution

    图  6  不同时刻轴向应变分布

    Figure  6.  Distributions of axial strain at different times

    图  7  不同方法得到的试样应变时程比较

    Figure  7.  Comparison of specimen's strain profiles obtained using different methods

    图  8  不同应变率下试样的应力-应变曲线

    Figure  8.  Stress-strain curves of specimen at different strain rates

    图  9  高应变率加载下应变率和应力时程曲线

    Figure  9.  Profiles of strain rate and stress for specimen under high strain rate loading

    图  10  动态增强因子随应变率变化曲线

    Figure  10.  Variation of dynamic increase factor with strain rate

    图  11  不同应变率下径向应变和轴向应变随轴向应力变化曲线

    Figure  11.  Variations of radial and axial strain with axial stress at different strain rates

    图  12  归一化畴变临界应力与相变临界应力随应变率变化曲线

    Figure  12.  Normalized critical domain switching stress and phase transformation stress vs. strain rate

    图  13  高应变率下4种孔隙率的未极化PZT95/5的应力-应变曲线

    Figure  13.  Stress-strain curves of unpoled PZT95/5 with different porosities at high strain rate

    图  14  准静态和动态压缩强度与孔隙率的关系

    Figure  14.  Quasi-static and dynamic compressive fracture stress vs. porosity

    图  15  动态畴变临界应力和相变临界应力与孔隙率的关系

    Figure  15.  Variations of critical domain switching stress and phase transformation stress with porosity

  • [1] 钟纬烈.铁电体物理学[M].北京:科学出版社, 1996.
    [2] 杜金梅, 张毅, 张福平, 等.冲击加载下PZT95/5铁电陶瓷的脉冲大电流输出特性[J].物理学报, 2006, 55(5):2584-2589. doi: 10.7498/aps.55.2584

    DU Jinmei, ZHANG Yi, ZHANG Fuping, et al. Large current out-put of PZT 95/5 ferroelectric ceramics under shock loading[J]. Acta Physica Sinica, 2006, 55(5):2584-2589. doi: 10.7498/aps.55.2584
    [3] LYSNE P C, PERCIVAL C M. Electric energy generation by shock compression of ferroelectric ceramics: Normal-mode response of PZT 95/5[J]. Journal of Applied Physics, 1975, 46(4):1519-1525. doi: 10.1063/1.321803
    [4] SETCHELL R E. Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3: Depoling currents[J]. Journal of Applied Physics, 2005, 97(1):013507. doi: 10.1063/1.1828215
    [5] SETCHELL R E. Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3: Hugoniot states and constitutive mechanical properties[J]. Journal of Applied Physics, 2003, 94(1):573-588. doi: 10.1063/1.1578526
    [6] ZHANG F P, HE H L, LIU G M, et al. Failure behavior of Pb(Zr0.95Ti0.05)O3 ferroelectric ceramics under shock compression[J]. Journal of Applied Physics, 2013, 113(18):183501. doi: 10.1063/1.4803052
    [7] ZEUCH D H, MONTGOMERY S T, HOLCOMB D J. Uniaxial compression experiments on lead zirconate titanate 95/5-2Nb ceramic: Evidence for an orientation-dependent, "maximum compressive stress" criterion for onset of the ferroelectric to antiferroelectric polymorphic transformation[J]. Journal of Materials Research, 2000, 15(3):689-703. doi: 10.1557/JMR.2000.0102
    [8] ZEUCH D H, MONTGOMERY S T, HOLCOMB D J. The effects of nonhydrostatic compression and applied electric field on the electromechanical behavior of poled lead zirconate titanate 95/5-2Nb ceramic during the ferroelectric to antiferroelectric polymorphic transformation[J]. Journal of Materials Research, 1999, 14(5):1814-1827. doi: 10.1557/JMR.1999.0245
    [9] AVDEEV M, JORGENSEN J D, SHORT S, et al. Pressure-induced ferroelectric to antiferroelectric phase transition in Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3[J]. Physical Review B, 2006, 73(6):064105. doi: 10.1103/PhysRevB.73.064105
    [10] FENG N, NIE H, CHEN X, et al. Depoling of porous Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric ceramics under shock wave load[J]. Current Applied Physics, 2010, 10(6):1387-1390. doi: 10.1016/j.cap.2010.04.012
    [11] SETCHELL R E. Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3: Microstructural effects[J]. Journal of Applied Physics, 2007, 101(5):053525. doi: 10.1063/1.2697428
    [12] 蒋招绣, 辛铭之, 申海艇, 等.多孔未极化Pb(Zr0.95Ti0.05)O3铁电陶瓷单轴压缩力学响应与相变[J].物理学报, 2015, 64(13):134601. doi: 10.7498/aps.64.134601

    JIANG Zhaoxiu, XIN Mingzhi, SHEN Haiting, et al. Mechanical properties and phase transformation of porous unpoled Pb(Zr0.95Ti0.05)O3 ferroelectric ceramics under uniaxial compression[J]. Acta Physica Sinica, 2015, 64(13):134601. doi: 10.7498/aps.64.134601
    [13] 蒋招绣, 申海艇, 辛铭之, 等.多孔极化PZT95/5铁电陶瓷单轴压缩力学响应与放电特性[J].固体力学学报, 2016, 37(1):50-57. http://www.cqvip.com/QK/95077X/201601/668194836.html

    JIANG Zhaoxiu, SHEN Haiting, XIN Mingzhi, et al. Mechanical properties and depoling of porous poled PZT95/5 ferroelectric ceramics under uniaxial compression[J]. Chinese Journal of Solid Mechanics, 2016, 37(1):50-57. http://www.cqvip.com/QK/95077X/201601/668194836.html
    [14] 王礼立.应力波基础[M].2版.北京:国防工业出版社, 2010.
    [15] YANG L M, SHIM V P W. An analysis of stress uniformity in split Hopkinson bar test specimens[J]. International Journal of Impact Engineering, 2005, 31(2):129-150. doi: 10.1016/j.ijimpeng.2003.09.002
    [16] 朱珏, 胡时胜, 王礼立.SHPB试验中粘弹性材料的应力均匀性分析[J].爆炸与冲击, 2006, 26(4):315-322. doi: 10.11883/1001-1455(2006)04-0315-08

    ZHU Jue, HU Shisheng, WANG Lili. Analysis on stress uniformity of viscoelastic materials in split Hopkinson bar tests[J]. Explosion and Shock Waves, 2006, 26(4):315-322. doi: 10.11883/1001-1455(2006)04-0315-08
    [17] 毛勇建, 李玉龙.SHPB试验中试件的轴向应力均匀性[J].爆炸与冲击, 2008, 28(5):448-454. doi: 10.11883/1001-1455(2008)05-0448-07

    MAO Yongjian, LI Yulong. Axial stress uniformity in specimens of SHPB tests[J]. Explosion and Shock Wave, 2008, 28(5):448-454. doi: 10.11883/1001-1455(2008)05-0448-07
    [18] SCHREIER H, ORTEU J J, SUTTON M A. Image correlation for shape, motion and deformation measurements[M]. New York: Springer, 2009.
    [19] FREW D J, FORRESTAL M J, CHEN W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar[J]. Experimental Mechanics, 2002, 42(1):93-106. doi: 10.1007/BF02411056
    [20] LI Q M, MENG H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test[J]. International Journal of Solids and Structures, 2003, 40(2):343-360. doi: 10.1016/S0020-7683(02)00526-7
    [21] FORRESTAL M J, WRIGHT T W, CHEN W. The effect of radial inertia on brittle samples during the split Hopkinson pressure bar test[J]. International Journal of Impact Engineering, 2007, 34(3):405-411. doi: 10.1016/j.ijimpeng.2005.12.001
    [22] 杨卫.力电失效学[M].北京:清华大学出版社, 2000.
  • 加载中
图(15)
计量
  • 文章访问数:  6146
  • HTML全文浏览量:  1440
  • PDF下载量:  341
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-31
  • 修回日期:  2017-03-04
  • 刊出日期:  2018-07-25

目录

    /

    返回文章
    返回