Pop relationship of JBO-9021 explosives
-
摘要: 采用激光干涉测速技术和高速扫描相机,对新型钝感高能炸药JBO-9021(TATB、HMX和黏结剂的质量分数分别为80%、15%和5%)的冲击起爆Pop关系进行了研究。通过激光干涉测速技术获得了JBO-9021炸药冲击起爆过程中不同光纤探针处(即不同冲击波位置)的粒子起跳瞬时速度,结合未反应炸药的雨贡纽曲线,获得了粒子起跳点的冲击波压力;通过高速扫描相机获得冲击到爆轰距离,结合光纤探针所处位置,得到不同压力下JBO-9021炸药的冲击到爆轰距离,进而拟合出反映JBO-9021炸药冲击起爆性能的Pop关系曲线。结果显示,相对于TATB基PBX9502炸药和HMX基PBX9501炸药,JBO-9021炸药的冲击起爆性能更加优异。Abstract: In this study we performed experiment on JBO-9021, a new kind of high insensitive explosive, in which the mass fractions of TATB, HMX and binder are 80%, 15% and 5%, respectively, under strong shock and achieved its particle velocity histories using laser interferometry and a high-speed scanning camera. We derived the initial shock pressures at different positions in the wedge-shaped test explosive from the particle velocity histories that were measured by laser interferometry and the Hugoniot curve of the unreacted JBO-9021 explosive. According to the run distance to detonation obtained by a streak camera and the locations of the pins, we investigated the Pop relationship of this high insensitive explosive as a function of the initial shock pressure and the run distance to detonation, and demonstrated that JBO-9021's shock initiation performance is superior to that of the TATB based explosive PBX9502 and the HMX based explosive PBX9501.
-
Key words:
- JBO-9021 /
- insensitive high explosive /
- laser interferometry /
- Pop-plot
-
表 1 实验结果
Table 1. Experimental results
探针编号 h/mm s/mm up/(km·s-1) p/GPa 1# 4 4.49 1.147 10.31 2# 5 3.49 1.233 11.72 3# 6 2.49 1.349 13.77 4# 7 1.49 1.592 18.60 5# 8 0.49 1.838 27.06 -
[1] GUSTAVSEN R L, THOMPSON D G, OLINGER B W, et al. Shock initiation experiments on ratchet grown PBX 9502: LA-UR-10-01468[R]. Los Alamos: Los Alamos National Laboratory (LANL), 2010. [2] 张涛, 谷岩, 赵继波, 等.新型高能钝感炸药JBO-9X在较高冲击压力下冲击起爆过程的实验研究[J].火炸药学报, 2016, 39(1):28-33. http://www.cnki.com.cn/Article/CJFDTOTAL-BGXB201601005.htmZHANG Tao, GU Yan, ZHAO Jibo, et al. Experimental study on shock initiation process of a new insensitive high explosive JBO-9X under high impact pressure[J]. Chinese Journal of Explosives & Propellants, 2016, 39(1):28-33. http://www.cnki.com.cn/Article/CJFDTOTAL-BGXB201601005.htm [3] BOUYER V, DOUCET M, DECARIS L. Experimental measurements of the detonation wave profile in a TATB based explosive[C]//EPJ Web of Conferences, EDP Sciences, 2010, 10: 00030. [4] BOUYER V, HEBERT P, DOUCET M, et al. Experimental measurements of the chemical reaction zone of TATB and HMX based explosives[J]. AIP Conference Proceedings, 2012, 1426(1):209-212. doi: 10.1063/1.3686256 [5] SOLLIER A, MANCZUR P, CROUZET B, et al. Single and double shock initiation of TATB based explosive T2: comparison of electromagnetic gauge measurements with DNS using different reactive flow models[C]//Proceedings of the 14th Symposium (International) on Detonation. Coeur d'Alene, USA, 2010: 563-572. [6] 王桂吉, 赵同虎, 莫建军, 等.一种以TATB/HMX为基炸药的到爆轰距离[J].爆炸与冲击, 2006, 26(6):510-515. doi: 10.11883/1001-1455(2006)06-0510-06WANG Guiji, ZHAO Tonghu, MO Jianjun, et al. Run distance to detonation in a TATB/HMX-based explosive[J]. Explosion and Shock Waves, 2006, 26(6):510-515. doi: 10.11883/1001-1455(2006)06-0510-06 [7] VANDERSALL K S, TARVER C M, GARCIA F, et al. Low amplitude single and multiple shock initiation experiments and modeling of LX-04: UCRL-CONF-222467[R]. Livermore: Lawrence Livermore National Laboratory (LLNL), 2006. http://www.researchgate.net/publication/255280754_LOW_AMPLITUDE_SINGLE_AND_MULTIPLE_SHOCK_INITIATION_EXPERIMENTS_AND_MODELING_OF_LX04 [8] GUSTAVSEN R L, SHEFFIELD S A, ALCON R R, et al. Initiation of EDC-37 measured with embedded electromagnetic particle velocity gauges[J]. AIP Conference Proceedings, 2000, 505(1):879-882. doi: 10.1063/1.1303608 [9] SHEFFIELD S A, GUSTAVSEN R L, ALCON R R. In-situ magnetic gauging technique used at LANL-method and shock information obtained[J]. AIP Conference Proceedings, 2000, 505(1):1043-1048. https://www.researchgate.net/profile/James_Langenbrunner [10] SHEFFIELD S A, BLOOMQUIST D D, TARVER C M. Subnanosecond measurements of detonation fronts in solid high explosives[J]. The Journal of Chemical Physics, 1984, 80(8):3831-3844. doi: 10.1063/1.447164 [11] URTIEW P A, VANDERSALL K S, TARVER C M, et al. Shock initiation experiments and modeling of composition B, C-4, and ANFO[C]//Proceedings of the 13th Symposium (International) on Detonation. Norfolk, 2006: 432-439. [12] CHIDESTER S K, THOMPSON D G, VANDERSALL K S, et al. Shock initiation experiments on PBX 9501 explosive at pressures below 3 GPa with associated ignition and growth modeling[J]. AIP Conference Proceedings, 2007, 955(1):903-906. https://www.osti.gov/servlets/purl/920483 [13] 张涛, 赵继波, 伍星, 等.未反应JBO-9021炸药冲击雨贡纽曲线的研究[J].高压物理学报, 2016, 30(6):457-462. doi: 10.11858/gywlxb.2016.06.004ZHANG Tao, ZHAO Jibo, WU Xing, et al. Hugoniot curve of unreacted JBO-9021 explosive[J]. Chinese Journal of High Pressure Physics, 2016, 30(6):457-462. doi: 10.11858/gywlxb.2016.06.004