点火位置对泄爆空间甲烷-空气爆炸荷载的影响

王超强 杨石刚 方秦 鲍麒

王超强, 杨石刚, 方秦, 鲍麒. 点火位置对泄爆空间甲烷-空气爆炸荷载的影响[J]. 爆炸与冲击, 2018, 38(4): 898-904. doi: 10.11883/bzycj-2016-0344
引用本文: 王超强, 杨石刚, 方秦, 鲍麒. 点火位置对泄爆空间甲烷-空气爆炸荷载的影响[J]. 爆炸与冲击, 2018, 38(4): 898-904. doi: 10.11883/bzycj-2016-0344
WANG Chaoqiang, YANG Shigang, FANG Qin, BAO Qi. Effect of ignition position on overpressure in vented explosion of methane-air mixtures[J]. Explosion And Shock Waves, 2018, 38(4): 898-904. doi: 10.11883/bzycj-2016-0344
Citation: WANG Chaoqiang, YANG Shigang, FANG Qin, BAO Qi. Effect of ignition position on overpressure in vented explosion of methane-air mixtures[J]. Explosion And Shock Waves, 2018, 38(4): 898-904. doi: 10.11883/bzycj-2016-0344

点火位置对泄爆空间甲烷-空气爆炸荷载的影响

doi: 10.11883/bzycj-2016-0344
基金项目: 

国家自然科学基金项目 51408608

国家重点基础研究发展计划(973计划)项目 2015CB058001

江苏省自然科学基金项目 BK20150060

江苏省自然科学基金项目 BK20140067

详细信息
    作者简介:

    王超强(1991-), 男, 硕士研究生

    通讯作者:

    杨石刚, youngshg@126.com

  • 中图分类号: O381;TD712

Effect of ignition position on overpressure in vented explosion of methane-air mixtures

  • 摘要: 在12 m3密闭空间内开展了甲烷-空气预混气体(甲烷体积分数为9.5%)的爆炸试验研究,改变点火位置,分析有泄爆口时点火位置对甲烷-空气爆炸超压和火焰形态的影响。结果表明:点火位置对Δp1的升压速度基本没有影响,Δp2的峰值随着点火位置远离泄爆口而增大,Δp4的峰值与点火位置的关系为:中心点火最大,尾部点火次之,前端点火最小。在所有位置,Δp1随着泄爆阈值的增大而增大,且增量相同;Δp2在前端点火和中心点火时随泄爆阈值的增加而消失,仅在尾部点火时出现;Δp4只有在中心点火时随泄爆阈值的增加而增加。外部火焰发展过程可以分为火球阶段和火焰喷射阶段,尾部点火和中心点火的火球大小及火焰喷射长度远大于前端点火。
  • 图  1  试验系统结构

    Figure  1.  Schematic diagram of the test setup

    图  2  试验操作流程

    Figure  2.  Operation process of test

    图  3  不同试验工况下的超压时程曲线

    Figure  3.  Overpressure-time curves under different test conditions

    图  4  Δp4的产生机制

    Figure  4.  Generation mechanism of Δp4

    图  5  不同点火位置的超压时程曲线

    Figure  5.  Overpressure-time histories for different ignition positions

    图  6  不同点火位置对不同峰值的影响

    Figure  6.  Overpressure peaks influenced by different ignition positions

    图  7  外部火焰形态发展

    Figure  7.  Evolution of external flame

    表  1  不同点火位置下各超压峰值

    Table  1.   Overpressure peaks at different ignition positions

    点火位置 聚乙烯薄膜 4 mm厚浮法玻璃
    Δp1/kPa Δp2/kPa Δp4/kPa Δp1/kPa Δp4/kPa
    前端点火 0.49 0.25 13.3 9.6
    尾部点火 0.87 5.27 56.8 12.5 54.4
    中心点火 1.04 2.32 90.5 11.7 129.2
    下载: 导出CSV
  • [1] VYAZMINA E, JALLAIS S. Validation and recommendations for FLACS CFD and engineering approaches to model hydrogen vented explosions: effects of concentration, obstruction vent area and ignition position[J]. International Journal of Hydrogen Energy, 2016, 41(33):15101-15109. doi: 10.1016/j.ijhydene.2016.05.189
    [2] BAO Q, FANG Q, ZHANG Y, et al. Effects of gas concentration and venting pressure on overpressure transients during vented explosion of methane-air mixtures[J]. Fuel, 2016, 175:40-48. doi: 10.1016/j.fuel.2016.01.084
    [3] 郑立刚, 吕先舒, 郑凯, 等.点火源位置对甲烷-空气爆燃超压特征的影响[J].化工学报, 2015(7):2749-2756. https://www.researchgate.net/profile/Ligang_Zheng3/publication/282680943_Influence_of_ignition_position_on_overpressure_of_premixed_methane-air_deflagration/links/56936d5808aed0aed8178954.pdf?origin=publication_list

    ZHENG Ligang, LÜ Xianshu, ZHENG Kai, et al. Influence of ignition position on overpressure of premixed methane-air deflagration[J]. Journal of Chemical Industry and Engineering, 2015(7):2749-2756. https://www.researchgate.net/profile/Ligang_Zheng3/publication/282680943_Influence_of_ignition_position_on_overpressure_of_premixed_methane-air_deflagration/links/56936d5808aed0aed8178954.pdf?origin=publication_list
    [4] 曹勇. 点火位置对氢气-空气泄爆特性影响的实验研究[D]. 安徽淮南: 安徽理工大学, 2016. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y3010585
    [5] SOLBERG D M, PAPPAS J A, SKRAMSTAD E. Observations of flame instabilities in large scale vented gas explosions[J]. Symposium on Combustion, 1981, 18(1):1607-1614. doi: 10.1016/S0082-0784(81)80164-6
    [6] BRADLEY D, MITCHESON A. The venting of gaseous explosions in spherical vessels: Ⅰ: theory[J]. Combustion and Flame, 1978, 32(78):237-255.
    [7] KASMANI R M, ANDREWS G E, PHYLAKTOU H N. Experimental study on vented gas explosion in a cylindrical vessel with a vent duct[J]. Process Safety and Environmental Protection, 2013, 91(4):245-252. doi: 10.1016/j.psep.2012.05.006
    [8] HARRISON A J, EYRE J A. External explosions as a result of explosion venting[J]. Combustion Science and Technology, 1987, 52(1/2/3):91-106. https://www.researchgate.net/publication/277541612_External_Explosions_as_a_Result_of_Explosion_Venting
    [9] BAUWENS C R, CHAFFEE J, DOROFEEV S. Effect of ignition location, vent size, and obstacles on vented explosion overpressures in propane-air mixtures[J]. Combustion Science and Technology, 2010, 182(11/12):1915-1932. doi: 10.1080/00102202.2010.497415?needAccess=true
    [10] COOPER M G, FAIRWEATHER M, TITE J P. On the mechanisms of pressure generation in vented explosions[J]. Combustion and Flame, 1986, 65(1):1-14. http://www.sciencedirect.com/science/article/pii/0010218086900672
    [11] ROCOURT X, AWAMAT S, SOCHET I, et al. Vented hydrogen-air deflagration in a small enclosed volume[J]. International Journal of Hydrogen Energy, 2014, 39(35):20462-20466. doi: 10.1016/j.ijhydene.2014.03.233
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  5228
  • HTML全文浏览量:  1859
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-10
  • 修回日期:  2017-02-17
  • 刊出日期:  2018-07-25

目录

    /

    返回文章
    返回