Effect of ignition position on overpressure in vented explosion of methane-air mixtures
-
摘要: 在12 m3密闭空间内开展了甲烷-空气预混气体(甲烷体积分数为9.5%)的爆炸试验研究,改变点火位置,分析有泄爆口时点火位置对甲烷-空气爆炸超压和火焰形态的影响。结果表明:点火位置对Δp1的升压速度基本没有影响,Δp2的峰值随着点火位置远离泄爆口而增大,Δp4的峰值与点火位置的关系为:中心点火最大,尾部点火次之,前端点火最小。在所有位置,Δp1随着泄爆阈值的增大而增大,且增量相同;Δp2在前端点火和中心点火时随泄爆阈值的增加而消失,仅在尾部点火时出现;Δp4只有在中心点火时随泄爆阈值的增加而增加。外部火焰发展过程可以分为火球阶段和火焰喷射阶段,尾部点火和中心点火的火球大小及火焰喷射长度远大于前端点火。Abstract: Vented explosion tests were carried out in a 12 m3 concrete chamber filled with premixed methane-air mixture with the methane volume fraction of 9.5%, and the influence of the ignition position on the development of overpressure and the evolution of flame was investigated. The results show that this influence on the rising rate of Δp1 was nearly negligible but the peak value of Δp2 increased with the increase of the distance between the ignition position and the vent, and the peak value of Δp4 was correlated with different ignition positions, i.e. central ignition, rear ignition, front ignition, in an order of descending influence. Moreover, when the venting pressure got bigger, Δp1 had the same increment at all the ignition positions, whereas Δp2 vanished in front and central ignitions, and Δp4 increased with the increase of venting pressure only in center ignition. Besides, the evolution of the external frame was observed to fall into two stages: the fireball formation and the jet frame. The size of the fireball and the maximum length of the external jet flame in rear and central ignitions were larger than those in front ignition.
-
Key words:
- methane-air mixtures /
- vent explosion /
- peak overpressure /
- ignition position
-
表 1 不同点火位置下各超压峰值
Table 1. Overpressure peaks at different ignition positions
点火位置 聚乙烯薄膜 4 mm厚浮法玻璃 Δp1/kPa Δp2/kPa Δp4/kPa Δp1/kPa Δp4/kPa 前端点火 0.49 0.25 13.3 9.6 尾部点火 0.87 5.27 56.8 12.5 54.4 中心点火 1.04 2.32 90.5 11.7 129.2 -
[1] VYAZMINA E, JALLAIS S. Validation and recommendations for FLACS CFD and engineering approaches to model hydrogen vented explosions: effects of concentration, obstruction vent area and ignition position[J]. International Journal of Hydrogen Energy, 2016, 41(33):15101-15109. doi: 10.1016/j.ijhydene.2016.05.189 [2] BAO Q, FANG Q, ZHANG Y, et al. Effects of gas concentration and venting pressure on overpressure transients during vented explosion of methane-air mixtures[J]. Fuel, 2016, 175:40-48. doi: 10.1016/j.fuel.2016.01.084 [3] 郑立刚, 吕先舒, 郑凯, 等.点火源位置对甲烷-空气爆燃超压特征的影响[J].化工学报, 2015(7):2749-2756. https://www.researchgate.net/profile/Ligang_Zheng3/publication/282680943_Influence_of_ignition_position_on_overpressure_of_premixed_methane-air_deflagration/links/56936d5808aed0aed8178954.pdf?origin=publication_listZHENG Ligang, LÜ Xianshu, ZHENG Kai, et al. Influence of ignition position on overpressure of premixed methane-air deflagration[J]. Journal of Chemical Industry and Engineering, 2015(7):2749-2756. https://www.researchgate.net/profile/Ligang_Zheng3/publication/282680943_Influence_of_ignition_position_on_overpressure_of_premixed_methane-air_deflagration/links/56936d5808aed0aed8178954.pdf?origin=publication_list [4] 曹勇. 点火位置对氢气-空气泄爆特性影响的实验研究[D]. 安徽淮南: 安徽理工大学, 2016. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y3010585 [5] SOLBERG D M, PAPPAS J A, SKRAMSTAD E. Observations of flame instabilities in large scale vented gas explosions[J]. Symposium on Combustion, 1981, 18(1):1607-1614. doi: 10.1016/S0082-0784(81)80164-6 [6] BRADLEY D, MITCHESON A. The venting of gaseous explosions in spherical vessels: Ⅰ: theory[J]. Combustion and Flame, 1978, 32(78):237-255. [7] KASMANI R M, ANDREWS G E, PHYLAKTOU H N. Experimental study on vented gas explosion in a cylindrical vessel with a vent duct[J]. Process Safety and Environmental Protection, 2013, 91(4):245-252. doi: 10.1016/j.psep.2012.05.006 [8] HARRISON A J, EYRE J A. External explosions as a result of explosion venting[J]. Combustion Science and Technology, 1987, 52(1/2/3):91-106. https://www.researchgate.net/publication/277541612_External_Explosions_as_a_Result_of_Explosion_Venting [9] BAUWENS C R, CHAFFEE J, DOROFEEV S. Effect of ignition location, vent size, and obstacles on vented explosion overpressures in propane-air mixtures[J]. Combustion Science and Technology, 2010, 182(11/12):1915-1932. doi: 10.1080/00102202.2010.497415?needAccess=true [10] COOPER M G, FAIRWEATHER M, TITE J P. On the mechanisms of pressure generation in vented explosions[J]. Combustion and Flame, 1986, 65(1):1-14. http://www.sciencedirect.com/science/article/pii/0010218086900672 [11] ROCOURT X, AWAMAT S, SOCHET I, et al. Vented hydrogen-air deflagration in a small enclosed volume[J]. International Journal of Hydrogen Energy, 2014, 39(35):20462-20466. doi: 10.1016/j.ijhydene.2014.03.233