Finite element analysis of CFRP-concrete-steel composite structure under low velocity lateral impact loading
-
摘要: 采用有限元软件ABAQUS建立了碳纤维增强聚合物(CFRP)-混凝土-钢管组合结构在低速侧向撞击作用下的有限元模型。模型的计算结果与试验结果吻合良好,能够较好地模拟CFRP-混凝土-钢管在侧向撞击下的力学特性。利用该模型,对试件在冲击荷载作用下的动力响应全过程进行分析,采用正交分析法研究了冲击高度、空心率等7种因素对试件冲击力峰值、冲击力平台值和跨中残余挠度的影响。结果表明:冲击高度(冲击能量)是影响冲击力峰值的主要因素;空心率是影响冲击力平台值的主要因素,并且当空心率在0.3~0.7之间时,试件的抗撞击性能随着空心率的提高而逐渐增强;冲击后结构的跨中残余挠度由冲击高度、空心率、CFRP层数、CFRP方向等因素共同影响。
-
关键词:
- 碳纤维增强聚合物-混凝土-钢管 /
- 侧向撞击 /
- 有限元分析 /
- 全过程分析 /
- 正交分析
Abstract: In this study, we set up a finite element model for a carbon fiber reinforced polymer (CFRP)-concrete-steel composite structure under low-velocity impact load using ABAQUS. The analytic results from our model were found to agree well with the test results, thus capable of being used to simulate the mechanical performance of the structure. Using this model, we analyzed all the stages of the dynamic response of the specimen under lateral impact load, and investigated the effects of seven factors, such as impact height and hollow ratio, on the peak value and the platform value of the impact force and the mid-span residual deflection, using orthogonal analysis. We found that the impact height (impact energy) is the main factor influencing the peak value of the impact force; the residual deflection is affected by the interaction of the main factors including the impact height, the hollow ratio, the number of CFRP layers and the direction of CFRP; the main factor of the platform value of the impact force is the hollow ratio, and the anti-impact performance of the specimen gradually increases with the increase of the hollow ratio ranging from 0.3 to 0.7. -
表 1 试件信息
Table 1. Specimen information
试件 截面尺寸/(mm×mm) n h/m E0/kJ Fs Δr D0×t0 Di×ti 模拟/kN 试验/kN 比值 模拟/mm 试验/mm 比值 F1L ∅114×0.17 ∅50×1.8 1 0.25 0.50 23.3 26.8 0.87 17.64 18.28 0.97 F1M ∅114×0.17 ∅50×1.8 1 0.50 1.00 23.4 24.0 0.98 38.10 38.34 0.99 F1H ∅114×0.17 ∅50×1.8 1 1.00 1.99 23.2 23.8 0.98 79.18 71.57 1.10 F2L ∅114×0.34 ∅50×1.8 2 0.25 0.50 24.9 24.3 1.02 16.96 19.11 0.89 F2M ∅114×0.34 ∅50×1.8 2 0.50 1.00 26.3 24.7 1.07 33.92 35.75 0.95 F2H ∅114×0.34 ∅50×1.8 2 1.00 1.99 27.1 28.4 0.95 71.08 70.88 1.00 F3L ∅114×0.51 ∅50×1.8 3 0.25 0.50 26.7 32.3 0.83 17.01 18.77 0.91 F3M ∅114×0.51 ∅50×1.8 3 0.50 1.00 29.7 37.0 0.80 32.77 34.75 0.94 F3H ∅114×0.51 ∅50×1.8 3 1.00 1.99 30.5 35.7 0.85 64.28 64.56 1.00 表 2 正交表
Table 2. Orthogonal table
试验 h/m ψ n θ/(°) fi/MPa fc/MPa Di/ti Fmax/kN Fs/kN Δr/mm 1 0.25 0.3 1 0 235 30 20 30 25 7.5 2 0.25 0.5 2 45 345 50 40 35 28 15.8 3 0.25 0.7 3 90 420 70 60 45 43 9.1 4 0.50 0.3 1 45 345 70 60 54 12 82.0 5 0.50 0.5 2 90 420 30 20 52 50 15.0 6 0.50 0.7 3 0 235 50 40 51 49 6.1 7 1.00 0.3 2 0 420 50 60 68 63 8.9 8 1.00 0.5 3 45 235 70 20 90 45 40.1 9 1.00 0.7 1 90 345 30 40 53 46 33.2 10 0.25 0.3 3 90 345 50 20 32 24 27.5 11 0.25 0.5 1 0 420 70 40 32 30 46.3 12 0.25 0.7 2 45 235 30 60 33 31 13.4 13 0.50 0.3 2 90 235 70 40 56 17 6.8 14 0.50 0.5 3 0 345 30 60 49 48 6.0 15 0.50 0.7 1 45 420 50 20 100 92 5.5 16 1.00 0.3 3 45 420 30 40 84 21 97.7 17 1.00 0.5 1 90 235 50 60 51 18 100.9 18 1.00 0.7 2 0 345 70 20 86 84 9.0 表 3 冲击力峰值极差分析结果
Table 3. Range analysis for peak value of impact force
Ki 因素 h ψ n θ fi fc Di/ti K1 207 324 320 316 311 301 390 K2 362 309 330 396 309 337 311 K3 432 368 351 289 381 363 300 R 225 59 31 107 72 62 90 表 4 冲击力平台值极差分析结果
Table 4. Range analysis for platform value of impact force
Ki 因素 h ψ n θ fi fc Di/ti K1 181 162 223 299 185 221 320 K2 268 219 273 229 242 274 191 K3 277 345 230 198 299 231 215 R 96 183 50 101 114 53 129 表 5 跨中残余挠度极差分析结果
Table 5. Range analysis for mid-span residual deflection
Ki 因素 h ψ n θ fi fc Di/ti K1 119.6 230.4 275.4 83.8 174.8 172.8 104.6 K2 121.4 224.1 130.1 254.5 173.5 244.8 205.9 K3 289.8 76.3 186.5 192.5 182.5 193.3 220.3 R 170.2 154.1 145.3 170.7 9.0 72.0 115.7 -
[1] TENG J G, CHEN J F, SMITH S T, et al. CFRP Strengthened RC Structures[M]. John Wiley & Sons Ltd Press, 2001. [2] ACI Committee 440. State of the art report on fiber reinforced plastic (FRP) reinforcement for concrete structures[R]. Detroit, Michigan: American Concrete Institute, 1996. http://trid.trb.org/view/459521 [3] ACI Committee 440. Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures: ACI-440. 2 R-02[S]. Farmington Hills: American Concrete Institute, 2002. [4] 陶忠, 于清.新型组合结构柱:试验、理论与方法[M].北京:科学出版社, 2006. [5] 陈肇元, 罗家谦, 潘雪雯. 钢管混凝土短柱作为防护结构构件的性能[R]. 北京: 清华大学抗震抗爆工程研究室, 1986. [6] XIAO Y, SHAN J, ZHENG Q, et al. Experimental studies on concrete filled steel tubes under high strain rate loading[J]. Journal of Materials in Civil Engineering, 2009, 21(10):569-577. doi: 10.1061/(ASCE)0899-1561(2009)21:10(569) [7] 霍静思, 任晓虎, 肖岩.标准火灾作用下钢管混凝土短柱落锤动态冲击试验研究[J].土木工程学报, 2012, 45(4):9-20. http://mall.cnki.net/magazine/Article/TMGC201204005.htmHUO Jingsi, REN Xiaohu, XIAO Yan. Impact behavior of concrete-filled steel tubular stub columns under ISO-834 standard fire[J]. China Civil Engineering Journal, 2012, 45(4):9-20. http://mall.cnki.net/magazine/Article/TMGC201204005.htm [8] BAMBACH M R. Design of hollow and concrete filled steel and stainless steel tubular columns for transverse impact loads[J]. Thin-Walled Structures, 2011, 49(10):1251-1260. doi: 10.1016/j.tws.2011.05.009 [9] WANG R, HAN L H, HOU C C. Behavior of concrete filled steel tubular (CFST) members under lateral impact: Experiment and FEA model[J]. Journal of Constructional Steel Research, 2013, 80(1):188-201. http://www.sciencedirect.com/science/article/pii/S0143974X12002106 [10] 侯川川, 王蕊, 韩林海.低速横向冲击下钢管混凝土构件的力学性能研究[J].工程力学, 2012(增刊1):107-110. http://www.cqvip.com/QK/95324X/2012A01/42171382.htmlHOU Chuanchuan, WANG Rui, HAN Linhai. Performance of concrete-filled steel tubular (CFST) members under low velocity transverse impact[J]. Engineering Mechanic, 2012(Suppl 1):107-110. http://www.cqvip.com/QK/95324X/2012A01/42171382.html [11] 陶忠, 韩林海.中空夹层钢管混凝土的研究进展[J].哈尔滨工业大学学报, 2003, 35(增刊1):144-146. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGJF200306002043.htmTAO Zhong, HAN Linhai. Development in the research of concrete filled double-skin steel tubes[J]. Journal of Harbin Institute of Technology, 2003, 35(Suppl 1):144-146. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGJF200306002043.htm [12] 黄宏, 陶忠, 韩林海.圆中空夹层钢管混凝土柱轴压工作机理研究[J].工业建筑, 2006, 36(11):11-14. doi: 10.3321/j.issn:1000-8993.2006.11.003HUANG Hong, TAO Zhong, HAN Linhai. Mechanism of concrete-filled double-skin steel tubular columns (CHS inner and CHS outer) subjected to axial compression[J]. Industrial Construction, 2006, 36(11):11-14. doi: 10.3321/j.issn:1000-8993.2006.11.003 [13] 陈学嘉, 陈梦成, 黄诚.圆中空夹层钢管混凝土压弯构件滞回模型研究[J].铁道建筑, 2011(4):141-144. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tdjz201104047 [14] 黄宏, 陈梦成, 黄斌洁.圆中空夹层钢管混凝土柱扭转实验研究[J].实验力学, 2012, 27(3):288-294. http://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201203004.htmHUANG Hong, CHEN Mengcheng, HUANG Binjie. Experimental study of concrete-filled double-skin circular steel tube subjected to pure torsion[J]. Journal of Experimental Mechanics, 2012, 27(3):288-294. http://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201203004.htm [15] 滕锦光, 余涛, 黄玉龙, 等.FRP管-混凝土-钢管组合柱力学性能的试验研究和理论分析[J].建筑钢结构进展, 2006, 8(5):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jzgjgjz200605001TENG Jinguang, YU Tao, HUANG Yulong, et al. Behavior of hybrid FRP-concrete-steel tubular columns: Experimental and theoretical studies[J]. Progress in Steel Building Structures, 2006, 8(5):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jzgjgjz200605001 [16] 王娟, 赵均海, 朱倩, 等.纤维增强复合材料-混凝土-钢双壁空心管短柱的轴压承载力[J].工业建筑, 2011, 41(11):130-133. http://www.cnki.com.cn/Article/CJFDTotal-BLGF201412008.htmWANG Juan, ZHAO Junhai, ZHU Qian, et al. Axial bearing capacity of FRP-concrete-steel double-skin tubular short columns[J]. Industrial Construction, 2011, 41(11):130-133. http://www.cnki.com.cn/Article/CJFDTotal-BLGF201412008.htm [17] 张冰. FRP管-高强混凝土-钢管组合短柱轴压性能试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10213-2010026441.htm [18] 钱稼茹, 刘明学.FRP-混凝土-钢双壁空心管短柱轴心抗压试验研究[J].建筑结构学报, 2008, 29(2):104-113. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_jzjgxb200802016QIAN Jiaru, LIU Mingxue. Experimental investigation of FRP-concrete-steel double-skin tubular stubs under axial compressive loading[J]. Journal of Building Structures, 2008, 29(2):104-113. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_jzjgxb200802016 [19] 王俊, 刘伟庆, 方海, 等.GFRP管-钢管双壁约束混凝土组合柱轴压性能与承载力实用计算方法研究[J].建筑结构, 2012(2):133-138. http://www.cnki.com.cn/Article/CJFDTotal-JCJG201202028.htmWANG Jun, LIU Weiqing, FANG Hai, et al. Experiment and capacity calculation theory research of hybrid GFRP-concrete-steel double skin tubular columns under axial compression[J]. Building Structure, 2012(2):133-138. http://www.cnki.com.cn/Article/CJFDTotal-JCJG201202028.htm [20] WANG R, HAN L H, TAO Z. Behavior of FRP-concrete-steel double skin tubular members under lateral impact: Experimental study[J]. Thin-Walled Structures, 2015, 95:363-373. doi: 10.1016/j.tws.2015.06.022 [21] 韩林海.钢管混凝土结构:理论与实践[M].北京:科学出版社, 2007:66-110. [22] 裴畅. 侧向撞击下H型钢构件动力响应及其剩余承载力的实验研究和仿真分析[D]. 太原: 太原理工大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10112-1013355641.htm [23] 周元鑫, 江大志, 夏源明.碳纤维静、动态加载下拉伸力学性能的试验研究[J].材料科学与工艺, 2000, 8(1):12-15. http://www.cqvip.com/QK/91902A/2000001/4122429.htmlZHOU Yuanxin, JIANG Dazhi, XIA Yuanming. Static and dynamic tensile behavior of carbon fiber[J]. Material Science and Technology, 2000, 8(1):12-15. http://www.cqvip.com/QK/91902A/2000001/4122429.html