Experimental study on directed loading metal particles of low collateral damage ammunition
-
摘要: 为了实现低附带弹药金属颗粒定向可控加载,研制了采用爆轰方式驱动低附带弹药金属颗粒的发射装置,并进行了不同尺寸钨球颗粒与不同装药比的发射实验。运用高速摄影与高速红外摄影捕捉爆轰驱动过程中颗粒抛撒分布和速度,并采用CT断层扫描和三维图像重建再现了颗粒在肥皂靶中的三维空间分布。实验结果揭示了爆轰驱动下颗粒加速、减速和散落3个阶段的特征。钨球颗粒速度均值范围为689.84~889.14 m/s,最大侵彻深度为65.23~167.35 mm,颗粒加载上靶率在30%以上。发射装置中金属颗粒/装药质量比可调,能重复使用。采用肥皂靶、高速摄影、高速红外相结合的测试方法有效可行,CT图像重建用于终点弹道参数判读能提高结果分析精度。以上结果可为研究低附带弹药对生物目标的毁伤效应、致伤机理和生物损伤判定与救治提供有效可行的技术与方法。Abstract: In this work, to realize explosive directed loading metal particles of low collateral damage ammunition, we developed a launching device and used it to carry out the dispersing of tungsten particles of different sizes and charging ratios. We captured the dispersion attitude and velocity of tungsten particles using high speed photography and high speed infrared photography, and demonstrated the three dimensional spatial distribution of tungsten particles inside the soap target using computerized tomography and three dimensional reconstruction. The results revealed the three phases of detonation-driven particles, i.e. acceleration, deceleration, and scattering. For particles of different sizes, the average velocity ranged from 689.84 m/s to 889.14 m/s, and the maximum penetrating depth ranged from 65.23 mm to 167.35 mm. The launching device was observed to perform well at directed loading metal particles with a rate of over 30% in hitting the target. We adjusted the mass ratio of the charge to the particles to meet various experimental requirements and improved the analysis accuracy of terminal ballistics parameters using the CT image reconstruction technique. Our study here can serve as a useful technique for further investigation of the damage effects, wounding mechanism, injury evaluation and treatment of low collateral damage ammunition.
-
Key words:
- low collateral damage ammunition /
- metal particle /
- directed loading /
- launching device
-
表 1 实验工况
Table 1. Tungsten particles used in experiments
编号 颗粒状材料 d/μm m0/g ρ/(g·cm-3) m/g L/cm 1 球形钨合金 50 6.8 1.7 6.8 40 2 球形钨合金 200 6.8 1.7 6.8 40 3 球形钨合金 500 6.8 1.7 6.8 40 4 球形钨合金 1 000 6.8 1.7 6.8 40 5 球形钨合金 1 500 6.8 1.7 6.8 40 6 球形钨合金 50 6.8 1.7 13.6 40 7 球形钨合金 200 6.8 1.7 13.6 40 8 球形钨合金 500 6.8 1.7 13.6 40 9 球形钨合金 1 000 6.8 1.7 13.6 40 10 球形钨合金 1 500 6.8 1.7 13.6 40 表 2 不同直径颗粒打击肥皂靶的弹道参数统计
Table 2. Ballistic parameters of the soap target penetrated by particles with different diameters
D/μm 颗粒侵彻深度分布(m=6.8 g) hmax/mm D/μm 颗粒侵彻深度分布(m=13.6 g) hmax/mm h/mm P/% h/mm P/% 50 ≤13.82 12.98 65.23 50 ≤14.56 10.93 102.72 13.82~25.26 58.56 14.56~31.70 48.77 ≥25.26 28.46 ≥31.70 40.30 200 ≤18.24 19.37 70.26 200 ≤16.85 15.96 118.46 18.24~52.62 67.17 16.85~46.55 43.62 ≥52.62 13.46 ≥46.55 40.42 500 ≤10.00 6.36 76.52 500 ≤38.67 22.92 124.63 10.00~43.00 50.63 38.67~55.88 54.99 ≥43.00 43.01 ≥55.88 22.09 1 000 ≤21.75 21.04 110.58 1 000 ≤24.00 11.42 130.98 21.75~87.00 66.15 24.00~50.50 47.85 ≥87.00 12.81 ≥50.50 40.73 1 500 ≤26.18 18.16 115.00 1 500 ≤25.72 13.17 167.35 26.18~65.37 39.71 25.72~52.30 39.82 ≥65.37 42.13 ≥52.30 47.01 -
[1] 刘俊, 姚文进, 郑宇, 等.低附带毁伤弹药的炸药/钨粉质量比对钨粉抛撒特性的影响[J].含能材料, 2015, 23(3):258-264. doi: 10.11943/j.issn.1006-9941.2015.03.011LIU Jun, YAO Wenjin, ZHANG Yu, et al. Effect of explosive/tugsten powder mass ratio for LCD ammunition on dispersal characteristics of tungsten powder[J]. Chinese Journal of Energetic Materials, 2015, 23(3):258-264. doi: 10.11943/j.issn.1006-9941.2015.03.011 [2] 蒋海燕, 王树山, 魏继锋, 等.爆炸驱动固/液介质爆炸抛撒的实验研究[J].爆炸与冲击, 2014, 34(5):574-579. doi: 10.11883/1001-1455(2014)05-0574-06JIANG Haiyan, WANG Shushan, WEI Jifeng, et al. Explosive dispersal of solid and liquid media: experimental investigation[J]. Explosion and Shock Waves, 2014, 34(5):574-579. doi: 10.11883/1001-1455(2014)05-0574-06 [3] 郑波, 陈力, 丁雁生, 等.温压炸药爆炸抛撒的运动规律[J].爆炸与冲击, 2008, 28(5):433-437. doi: 10.11883/1001-1455(2008)05-0433-05ZHENG Bo, CHEN Li, DING Yansheng, et al. Dispersal process of explosion production of thermobaric explosive[J]. Explosion and Shock Waves, 2008, 28(5):433-437. doi: 10.11883/1001-1455(2008)05-0433-05 [4] 陈亚红, 白春华, 李建平, 等.装药比对中心炸药抛撒钨颗粒群影响的实验研究[J].实验力学, 2010, 25(6):661-666. http://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201006010.htmCHEN Yahong, BAI Chunhua, LI Jianping, et al. Experimenal study of tungsten particles explosion dispersal with different charge ratios[J]. Journal of Experimental Mechanics, 2010, 25(6):661-666. http://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201006010.htm [5] 郭学永, 惠君明, 解立峰.燃料爆炸抛撒过程的实验研究[J].高压物理学报, 2005, 19(2):120-126. doi: 10.11858/gywlxb.2005.02.004GUO Xueyong, HUI Junming, XIE Lifeng. Experimental study on the process of fuel explosion dispersion[J]. Chinese Journal of High Pressure Physics, 2005, 19(2):120-126. doi: 10.11858/gywlxb.2005.02.004 [6] 白春华, 陈亚红, 李建平, 等.爆炸抛撒金属颗粒群的装药方式[J].爆炸与冲击, 2010, 30(6):652-657. doi: 10.11883/1001-1455(2010)06-0652-06BAI Chunhua, CHEN Yahong, LI Jianping, et al. Charge forms for explosion dispersal of metal particles[J]. Explosion and Shock Waves, 2010, 30(6):652-657. doi: 10.11883/1001-1455(2010)06-0652-06 [7] 陈亚红, 白春华, 刘意, 等.爆炸抛撒颗粒群动能特性的评价[J].火炸药学报, 2011, 34(4):45-48. http://www.cnki.com.cn/Article/CJFDTOTAL-MKBP200104000.htmCHEN Yahong, BAI Chunhua, LIU Yi, et al. Assessment on kinetic characteristics of granular swarm dispersed by explosion[J]. Chinese Journal of Explosives and Propellants, 2011, 34(4):45-48. http://www.cnki.com.cn/Article/CJFDTOTAL-MKBP200104000.htm [8] LIU G, HOU F, CAO B, et al. Experimental study of fuel-air explosive[J]. Combustion, Explosion, and Shock Waves, 2008, 44(2):213-217. doi: 10.1007/s10573-008-0028-7