空气炮碰撞实验台发射过程的数值模拟

肖程欢 鲁寨军

肖程欢, 鲁寨军. 空气炮碰撞实验台发射过程的数值模拟[J]. 爆炸与冲击, 2018, 38(4): 931-936. doi: 10.11883/bzycj-2016-0378
引用本文: 肖程欢, 鲁寨军. 空气炮碰撞实验台发射过程的数值模拟[J]. 爆炸与冲击, 2018, 38(4): 931-936. doi: 10.11883/bzycj-2016-0378
XIAO Chenghuan, LU Zhaijun. Numerical simulation of launching process of air gun impact test-bed[J]. Explosion And Shock Waves, 2018, 38(4): 931-936. doi: 10.11883/bzycj-2016-0378
Citation: XIAO Chenghuan, LU Zhaijun. Numerical simulation of launching process of air gun impact test-bed[J]. Explosion And Shock Waves, 2018, 38(4): 931-936. doi: 10.11883/bzycj-2016-0378

空气炮碰撞实验台发射过程的数值模拟

doi: 10.11883/bzycj-2016-0378
基金项目: 

国家自然科学基金项目 U1334208

详细信息
    作者简介:

    肖程欢(1989-), 男, 硕士研究生

    通讯作者:

    鲁寨军, qlzjzd@csu.edu.cn

  • 中图分类号: O351.2

Numerical simulation of launching process of air gun impact test-bed

  • 摘要: 利用计算流体动力学方法对单级空气炮碰撞实验台的发射过程进行了数值仿真,所得碰撞车发射速度与实验结果吻合。在此基础上,对碰撞车发射过程的流场变化、车体前后压力以及储气罐压力变化进行分析。结果表明,泄漏气体先于碰撞车充满整个发射空间,形成初始流场,使得车前压力出现正负交替现象,但其数值较小,对车体加速过程的影响可以忽略。当碰撞车进入泄压段后,受冲击射流作用,碰撞车仍处于加速状态,且速度增量约为2 m/s。
  • 图  1  PISO算法流程图

    Figure  1.  Flowchart of PISO algorithm

    图  2  SSAGIT模型

    Figure  2.  SSAGIT model

    图  3  碰撞车速度仿真结果

    Figure  3.  Simulation velocities of impact car in C1, C2 conditions

    图  4  加速过程(速度云图)

    Figure  4.  Process in acceleration part (velocity contour)

    图  5  车前初始流场

    Figure  5.  Initial flow field in front of impact car

    图  6  泄压段运行图

    Figure  6.  Running diagram of impact car in decompression part

    图  7  C1、C2工况下压力随碰撞车运行距离变化

    Figure  7.  Variation of pressure with running distance in C1, C2 conditions

    表  1  工况参数

    Table  1.   Parameters in two different work conditions

    工况编号 m/kg p0/MPa T/℃
    C1 355 0.98 20
    C2 1 040 2.98 13
    下载: 导出CSV

    表  2  实验速度

    Table  2.   Experiment velocity

    实验编号 C1 C2
    v1/(m·s-1) v2/(m·s-1) v1/(m·s-1) v2/(m·s-1)
    1 78.1 79.8 80.3 82.1
    2 77.6 79.5 80.0 81.7
    下载: 导出CSV
  • [1] 陈大年.二级轻气炮内弹道的数值模拟与性能分析[J].爆炸与冲击, 1989, 9(1):37-42. http://www.bzycj.cn/CN/abstract/abstract10869.shtml

    CHEN DANIAN. Numerical simulation and performance analysis of the two-stage light gun[J]. Explosion and Shock Waves, 1989, 9(1):37-42. http://www.bzycj.cn/CN/abstract/abstract10869.shtml
    [2] FRANCESCONI A, PAVARIN D, BETTELLA A, et al. A special design condition to increase the performance of two-stage light-gas guns[J]. International Journal of Impact Engineering, 2008, 35(12):1510-1515. doi: 10.1016/j.ijimpeng.2008.07.035
    [3] SIEGEL A E. The theory of high speed guns: AD475660[R]. France: Advisory Group for Aerospace Research and Development, 1965.
    [4] SHEPPARD L M. Theory of transonic gas gun[R]. Australia: Defense Science and Technology Organization Weapons Research Establishment, 1977: 1-14.
    [5] HUTCHINGS I M, ROCHESTER M C, CAMUS J J. A rectangular-bore gas gun[J]. Journal of Physics E: Scientific Instruments, 1977, 10(5):455-457. doi: 10.1088/0022-3735/10/5/012
    [6] 张来平, 邓小刚, 张涵信.动网格生成技术及非定常计算方法进展综述[J].力学进展, 2010, 40(4):424-447. doi: 10.6052/1000-0992-2010-4-J2009-123

    ZHANG Laiping, DENG Xiaogang, ZHANG Hanxin. Reviews of moving grid generation techniques and numerical methods for unsteady flows[J]. Advances in mechanics, 2010, 40(4):424-447. doi: 10.6052/1000-0992-2010-4-J2009-123
    [7] QIN Q Y, ZHANG X B. Numerical investigation on combustion in muzzle flows using an inert gas labeling method[J]. International Journal of Heat & Mass Transfer, 2016, 101:91-103. http://www.sciencedirect.com/science/article/pii/S0017931016304033
    [8] ZHUO C F, FENG F, WU X S. Development process of muzzle flows including a gun-launched missile[J]. Chinese Journal of Aeronautics, 2015, 28(2):385-386. doi: 10.1016/j.cja.2015.02.001
    [9] COSTA E, LAGASCO F. Development of a 3D numerical methodology for fast prediction of gun blast induced loading[J]. Shock Waves, 2014, 24(3):257-265. doi: 10.1007/s00193-013-0461-8
    [10] SANDOVAL P, CORNEJO P, TINAPP F. Evaluating the longitudinal stability of an UAV using a CFD-6DOF model[J]. Aerospace Science & Technology, 2015, 43:463-470. https://www.researchgate.net/publication/275058678_Evaluating_the_longitudinal_stability_of_an_UAV_using_a_CFD-6DOF_model
    [11] ZHANG X B, YU W. Aerodynamic analysis of projectile in gun system firing process[J]. Journal of Applied Mechanics, 2010, 77(5):769-775. https://www.researchgate.net/publication/245512943_Aerodynamic_Analysis_of_Projectile_in_Gun_System_Firing_Process
    [12] BLAZEK J. Computational fluid dynamics: principles and applications[M]. New York: Elsevier, 2015:81-96.
    [13] ANSYS Inc. ANSYS FLUENT: 14. 0 theory guide[Z]. PA, Canonsburg, 2011.
    [14] ISSA R I, GOSMAN A D, WATKINS A P. The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme[J]. Journal of Computational Physics, 1986, 62(1):66-82. doi: 10.1016/0021-9991(86)90100-2
    [15] 王保国, 离歌, 黄伟光, 等.非定常气体动力学[M].北京:北京理工大学出版社, 2012:122-150.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  5376
  • HTML全文浏览量:  2002
  • PDF下载量:  179
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-13
  • 修回日期:  2017-03-13
  • 刊出日期:  2018-07-25

目录

    /

    返回文章
    返回