Effect of axial and circumferential length of rotating detonation combustor on pressure and temperature of outlet flow field
-
摘要: 为了研究旋转爆震燃烧室与涡轮的匹配特性,利用二维欧拉方程数值研究了基于当量H2/Air燃烧的旋转爆震燃烧室出口流场特性,对比分析了不同燃烧室轴向长度和周向长度出口总压脉动、总压畸变以及出口温度分布规律。结果表明:旋转爆震燃烧室在稳定工作状态下,其出口总压的脉动值会呈现周期性振荡;燃烧室尺度对发动机出口流场的不均匀性有很大影响,随着燃烧室轴向长度的增大或周向尺寸的减小,其出口总压脉动均值、畸变指数和出口温度分布系数均会减小,其出口流场均匀性提高。此外,爆震波高度随着周向尺寸的增大而增大;轴向尺寸对爆震波高度几乎不产生影响。Abstract: For a better characterization of the correlation between the rotating detonation combustion chamber and the turbine, the characteristics of the rotating detonation outlet's flow field with equivalent hydrogen-air mixture were investigated numerically based on two-dimensional compressible Euler equations. The mean value of the outlet's total pressure pulse, distortion index and temperature distribution factor were analyzed in connection with different axial lengths and radiuses of the combustion. The results show that the value of the outlet's total pressure fluctuates periodically when the rotating detonation combustion remains in a steady state. The size of the combustor has significant influence on the homogeneity of the outlet's flow field. With the increase of the axial length or the decrease of the circumferential dimension of the combustion, the mean value of the outlet's total pressure pulsation, the distortion index and the outlet temperature distribution coefficient all decrease, whereas the homogeneity of the outlet's flow field increases. In addition, the height of the detonation wave gets bigger as does the circumferential size but the axial length has little effect on the height of the detonation wave.
-
表 1 不同燃烧室尺度的计算工况
Table 1. Calculation conditions with different combustion scales
Case Size/(mm×mm) 1 314×75 2 314×100 3 314×125 4 314×150 5 188×50 6 251×50 7 314×50 8 377×50 -
[1] 刘世杰, 林志勇, 覃慧, 等.连续旋转爆震波发动机研究进展[J].飞航导弹, 2010(2):70-75. http://mall.cnki.net/magazine/Article/FHDD201002021.htmLIU Shijie, LIN Zhiyong, QIN Hui, et al. Research progress of rotating detonation engine[J]. Aerodynamic Missile Journal, 2010(2):70-75. http://mall.cnki.net/magazine/Article/FHDD201002021.htm [2] 刘倩, 郑洪涛, 李智明.连续旋转爆轰燃烧室增压特性的数值研究[J].推进技术, 2014, 35(11):1577-1584. http://www.cnki.com.cn/Article/CJFDTotal-TJJS201411020.htmLIU Qian, ZHENG Hongtao, LI Zhiming. Numerical investigation on pressure amplifying characteristic of continuously rotating detonation combustor[J]. Journal of Propulsion Technology, 2014, 35(11):1577-1584. http://www.cnki.com.cn/Article/CJFDTotal-TJJS201411020.htm [3] 刘世杰, 覃慧, 林志勇, 等.连续旋转爆震波细致结构及自持机理[J].推进技术, 2011, 32(3):431-436. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tjjs201103025LIU Shijie, QIN Hui, LIN Zhiyong, et al. Detailed structure and propagating mechanism research on continuous rotating detonation wave[J]. Journal of Propulsion Technology, 2011, 32(3):431-436. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tjjs201103025 [4] 马虎, 封锋, 武晓松, 等.压力条件对旋转爆震发动机的影响[J].弹道学报, 2012, 24(4):94-98. http://www.cqvip.com/QK/92261X/201204/44304694.htmlMA Hu, FENG Feng, WU Xiaosong, et al. Effect of pressure condition on rotating detonation engine[J]. Journal of Ballistics, 2012, 24(4):94-98. http://www.cqvip.com/QK/92261X/201204/44304694.html [5] HISHIDA M, FUJIWARA T, WOLANSKI P. Fundamentals of rotating detonations[J]. Shock Waves, 2009, 19(1):1-10. https://www.deepdyve.com/lp/springer-journals/fundamentals-of-rotating-detonations-VHskzqJMw6 [6] YAMADA T, HAYASHI A K, YAMADA E, et al. Detonation limit thresholds in H2/O2 rotating detonation engine[J]. Combustion Science and Technology, 2010, 182(11/12):1901-1914. https://www.researchgate.net/profile/Vijay_Anand36/publication/282407479_Numerical_Study_of_Heat_Transfer_in_a_Rotating_Detonation_Combustor/links/56990eb908aea1476943206b/Numerical-Study-of-Heat-Transfer-in-a-Rotating-Detonation-Combustor.pdf [7] DAVIDENKO D M, GOKALP I, KUDRYAVTSEV A N. Numerical study of the continuous detonation wave rocket engine[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton, Ohio, 2008. [8] 姜孝海, 范宝春, 董刚, 等.旋转爆轰流场的数值模拟[J].推进技术, 2007, 28(4):403-407. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tjjs200704014JIANG Xiaohai, FAN Baochun, DONG Gang, et al. Numerical investigation on the flow field of rotating detonation wave[J]. Journal of Propulsion Technology, 2007, 28(4):403-407. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tjjs200704014 [9] 邵业涛, 王健平.连续爆轰发动机的二维数值模拟研究[J].航空动力学报, 2009, 24(5):980-986. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb200905004SHAO Yetao, WANG Jianping. Two dimensional simulation of continuous detonation engine[J]. Journal of Aerospace Power, 2009, 24(5):980-987. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb200905004 [10] 归明月, 范宝春, 张旭东, 等.旋转爆轰的三维数值模拟[J].推进技术, 2010, 31(1):82-86. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU201407003026.htmGUI Mingyue, FAN Baochun, ZHANG Xudong, et al. Three-dimensional simulation of continuous spin detonation[J]. Journal of Propulsion Technology, 2010, 31(1):82-86. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU201407003026.htm [11] 邵业涛, 王健平, 唐新猛, 等.连续旋转爆轰发动机流场三维数值模拟[J].航空动力学报, 2010, 25(8):1717-1722. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201008006SHAO Yetao, WANG Jianping, TANG Xinmeng, et al. Three-dimensional numerical simulation of continuous rotating detonation engine flow fields[J]. Journal of Aerospace Power, 2010, 25(8):1717-1722. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201008006 [12] 陈洁, 王栋, 马虎, 等.轴向长度对旋转爆震发动机的影响[J].航空动力学报, 2013(4):844-849. http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201304019.htmCHEN Jie, WANG Dong, MA Hu, et al. Influence of axial length on rotating detonation engine[J]. Journal of Aerospace Power, 2013, 28(4):844-849. http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201304019.htm [13] 张旭东, 范宝春, 潘振华, 等.旋转爆轰胞格结构的实验和数值研究[J].爆炸与冲击, 2011, 31(4):337-342. http://www.bzycj.cn/CN/abstract/abstract8680.shtmlZHANG Xudong, FAN Baochun, PAN Zhenhua, et al. Experimental and numerical investigation on cellular patterns of rotating detonations[J]. Explosion and Shock Waves, 2011, 31(4):337-342. http://www.bzycj.cn/CN/abstract/abstract8680.shtml [14] SHANK J C, KING P I, KARNESKY J, et al. Development and testing of a modular rotating detonation engine[C]//50th AIAA Aerospace Sciences Meeting. Nashville, Tennessee, 2012. [15] THEUERKAUF S W, KING P I, SCHAUER F, et al. Thermal management for a modular rotating detonation engine[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Texas, 2013. [16] NETTLETON M A. Recent work on gaseous detonations[J]. Shock Waves, 2002, 12(1):3-12. doi: 10.1007/s001930200134 [17] KINDRACKI J, WOLANSKI P, GUT Z. Experimental research on the rotating detonation in gaseous fuels-oxygen mixtures[J]. Shock Waves, 2011, 21(2):75-84. https://www.researchgate.net/publication/225673761_Experimental_research_on_the_rotating_detonation_in_gaseous_fuels-oxygen_mixtures [18] MOUZA A A, PATSA C M, SCHÖNFELD F. Mixing performance of a chaotic micro-mixer[J]. Chemical Engineering Research & Design, 2008, 86(10):1128-1134. https://www.sciencedirect.com/science/article/pii/S0263876208001238