爆炸载荷作用下具有可折叠芯层夹芯梁的动态响应

张培文 李世强 王志华 赵隆茂

张培文, 李世强, 王志华, 赵隆茂. 爆炸载荷作用下具有可折叠芯层夹芯梁的动态响应[J]. 爆炸与冲击, 2018, 38(1): 140-147. doi: 10.11883/bzycj-2017-0017
引用本文: 张培文, 李世强, 王志华, 赵隆茂. 爆炸载荷作用下具有可折叠芯层夹芯梁的动态响应[J]. 爆炸与冲击, 2018, 38(1): 140-147. doi: 10.11883/bzycj-2017-0017
ZHANG Peiwen, LI Shiqiang, WANG Zhihua, ZHAO Longmao. Dynamic response of sandwich beam with foldable core under blast loading[J]. Explosion And Shock Waves, 2018, 38(1): 140-147. doi: 10.11883/bzycj-2017-0017
Citation: ZHANG Peiwen, LI Shiqiang, WANG Zhihua, ZHAO Longmao. Dynamic response of sandwich beam with foldable core under blast loading[J]. Explosion And Shock Waves, 2018, 38(1): 140-147. doi: 10.11883/bzycj-2017-0017

爆炸载荷作用下具有可折叠芯层夹芯梁的动态响应

doi: 10.11883/bzycj-2017-0017
基金项目: 

国家自然科学基金项目 11572214

山西省自然科学基金项目 2013011005-2

汽车车身先进设计制造国家重点实验室开放基金资助项目 31615008

详细信息
    作者简介:

    张培文(1985—),男,博士研究生

    通讯作者:

    王志华, wangzh077@163.com

  • “第十一届全国爆炸力学学术会议”推荐论文
  • 中图分类号: O383.2

Dynamic response of sandwich beam with foldable core under blast loading

  • 摘要: 基于目前研究最广泛的刚性折纸(Tachi-origami)样式,通过改变其初始折叠角度构建出4种不同的蜂窝胞元,并且通过排列分布将其组成夹芯梁。采用商用有限元软件Abaqus/explicit对准静态和爆炸载荷作用下可折叠芯层夹芯梁的力学响应进行研究,分析可折叠芯层的泊松比变化规律、夹芯梁背板挠度以及能量吸收机理;并将夹芯梁与等质量的实体梁进行对比。采用后面板最大挠度作为抗爆性能的评价,结果发现:可折叠芯层在准静态载荷下具有一定的负泊松比效应;夹芯梁的抗爆性能优于实体梁,曲边蜂窝的初始折角对其作为芯层夹芯梁的抗爆性能有较大影响,随着初始折角的逐渐增大,其抗爆性能逐渐下降;当初始折角为直角时对应于方孔直边蜂窝,其抗爆性能最差。
    1)  “第十一届全国爆炸力学学术会议”推荐论文
  • 图  1  折痕样式布置图

    Figure  1.  Sketch of the origami creases' tessellations

    图  2  折叠胞元几何示意图

    Figure  2.  Sketch of unit cell's geometries

    图  3  有限元模拟示意图

    Figure  3.  Sketch of finite element model

    图  4  爆炸载荷作用下夹芯梁的示意图

    Figure  4.  Sketch of sandwich beam under blast loading

    图  5  Von Mises应力分布图

    Figure  5.  Distribution of Von Mises stress

    6(a)  单轴压缩下折叠芯层OC-1面外泊松比变化

    6(a).  Variation of out-plane Possion's ratio under uniaxial compression for OC-1 foldable core

    6(b)  单轴压缩下折叠芯层OC-2面外泊松比变化

    6(b).  Variation of out-plane Possion's ratio under uniaxial compression for OC-2 foldable core

    6(c)  单轴压缩下折叠芯层OC-3面外泊松比变化

    6(c).  Variation of out-plane Possion's ratio under uniaxial compression for OC-3 foldable core

    图  7  准静态单轴压缩下的名义应力应变曲线

    Figure  7.  Uniaxial stress-strain curve under quasi-static compression

    图  8  低碳钢方板中心挠度

    Figure  8.  Deflection at square plate center for low carbon steel

    图  9  实体梁与夹芯梁(OC-1)挠度和塑性耗散能时程曲线

    Figure  9.  Histories of deflection and plastic dissipation energy for sandwich and monolithic beam

    图  10  实体梁与夹芯梁(OC-1)挠度和塑性耗散能与比距离关系

    Figure  10.  Variation of deflection and energy dissipation with specific distance for sandwich and monolithic beams

    图  11  不同芯层夹芯梁挠度和塑性耗散能时程曲线

    Figure  11.  Histories of deflection and plastic dissipation energy for sandwich beams with different honeycomb cores

    图  12  不同比距离下4种芯层夹芯梁挠度和塑性耗散能对比

    Figure  12.  Variation of deflection and energy dissipation with specific distance for different sandwich beams

    表  1  不同蜂窝胞元夹芯梁的几何参数

    Table  1.   Geometry parameters of different honeycomb core cells

    折叠芯层 l/mm D/mm α/(°) β/(°) γ/(°) θ/(°) W/mm H/mm L/mm
    OC-1 13.66 27.32 45.00 35.27 90.00 60.00 40.98 66.92 725.56
    OC-2 11.13 19.28 60.00 26.57 90.00 75.53 40.98 67.69 725.56
    OC-3 10.00 19.36 75.00 14.51 90.00 86.16 40.98 67.77 725.56
    OC-4 9.66 22.59 90.00 0 90.00 90.00 40.98 67.77 725.56
    下载: 导出CSV
  • [1] 王志华, 朱峰, 赵隆茂.多孔金属夹芯结构动力学行为及其应用[M].北京:兵器工业出版社, 2010.
    [2] RUSSELL B P, LIU T, FLECK N A, et al. The soft impact of composite sandwich beams with a square-honeycomb core[J]. International Journal of Impact Engineering, 2012, 48(1):65-81. https://www.sciencedirect.com/science/article/pii/S0734743X11000868
    [3] LIU Y, ZHANG X C. The influence of cell micro-topology on the in-plane dynamic crushing of honeycombs[J]. International Journal of Impact Engineering, 2009, 36(1):98-109. doi: 10.1016/j.ijimpeng.2008.03.001
    [4] MCSHANE G J, RADFORD D D, DESHPANDE V S, et al. The response of clamped sandwich plates with lattice cores subjected to shock loading[J]. European Journal of Mechanics A/Solids, 2006, 25(2):215-229. doi: 10.1016/j.euromechsol.2005.08.001
    [5] LV C, KRISHNARAJU D, KONJEVOD G, et al. Origami based mechanical metamaterials[J]. Scientific Reports, 2014(4):5979.DOI: 10.1038/srep05979.
    [6] MORI O, SAWADA H, FUNASE R et al. First solar power sail demonstration by IKAROS[J]. Transactions of the Japan Society for Aeronautical and Space Sciences Aerospace Technology Japan, 2010, 8(27):25-31. https://www.researchgate.net/profile/Yasuyuki_Miyazaki/publication/253733249_First_Solar_Power_Sail_Demonstration_by_IKAROS/links/53fa697a0cf20a4549700683.pdf?origin=publication_list
    [7] TSUDA Y, MORI O, FUNASE R, et al. Flight status of IKAROS deep space solar sail demonstrator[J]. Acta Astronautica, 2011, 69(9):833-840. https://www.researchgate.net/publication/241078802_Flight_status_of_IKAROS_deep_space_solar_sail_demonstrator
    [8] ZIRBEL S A, LANG R J, THOMSON M W, et al. Accommodating thickness in origami-based deployable arrays[J]. Journal of Mechanical Design, 2013, 135(11):111005-11. doi: 10.1115/1.4025372
    [9] LIU Zhengyou, ZHANG Xixiang, MAO Yiwei, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485):1734-1736.DOI: 10.1126/science.289.5485.1734.
    [10] MALDOVAN M. Sound and heat revolutions in phononics[J]. Nature, 2013, 503(7475):209-217.DOI: 10.1038/nature12608.
    [11] GRZESCHIK M, FISCHER S, DRECHSLER K. Potential of high performance foldcores made out of PEEK polymer[C]//SAMPE Europe Technical Conference and "Table-Top" Exhibition 2009. Bristol, United Kingdom, 2009: 94-101.
    [12] HEIMBS S, MIDDENDORF P, KILCHERT S, et al. Numerical simulation of advanced folded core materials for structural sandwich applications[C]//The 1st European Air and Space Conference. Deutscher Luft-und Raumfahrt Kongress. Berlin, Germany, 2007: 2889-2896.
    [13] HEIMBS S, MIDDENDORF P, KILCHERT S, et al. Experimental and numerical analysis of composite folded sandwich core structures in compression[J]. Applied Composite Materials, 2007, 14(5/6):363-377. doi: 10.1007/s10443-008-9051-9
    [14] HEIMBS S. Virtual testing of sandwich core structures using dynamic finite element simulations[J]. Computational Materials Science, 2009, 45(2):205-216. doi: 10.1016/j.commatsci.2008.09.017
    [15] WACHINGER G, ANGERER E, MIDDENDORF P, et al. Impact protection structures for composite fuselage application[C]//SAMPE Europe International Conference. Paris, France, 2008: 271-277.
    [16] IMBALZANO G, TRAN P, NGO T D, et al. A numerical study of auxetic composite panels under blast loadings[J]. Composite Structures, 2016, 135(1):339-352. https://www.researchgate.net/profile/Tuan_Ngo2/publication/282594124_A_Numerical_Study_of_Auxetic_Composite_Panels_under_Blast_Loadings/links/5614772408ae4ce3cc63c7ae.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail
    [17] GERETTO C, CHUNG KIM YUEN S, NURICK G N. An experimental study of the effects of degrees of confinement on the response of square mild steel plates subjected to blast loading [J]. International Journal of Impact Engineering, 2015(79):32-44.DOI: 10.1016/j.ijimpeng.2014.08.002.
    [18] YAHAYA M A, RUAN D, LU G, et al. Response of aluminium honeycomb sandwich panels subjected to foam projectile impact: An experimental study[J]. International Journal of Impact Engineering, 2015, 75(1):100-109. https://www.sciencedirect.com/science/article/pii/S0734743X1400181X
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  5148
  • HTML全文浏览量:  1924
  • PDF下载量:  340
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-13
  • 修回日期:  2017-03-22
  • 刊出日期:  2018-01-25

目录

    /

    返回文章
    返回