• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

椭球罩作用下的水下爆炸冲击波反射聚焦模型

郭锐 刘磊

郭锐, 刘磊. 椭球罩作用下的水下爆炸冲击波反射聚焦模型[J]. 爆炸与冲击, 2018, 38(1): 174-182. doi: 10.11883/bzycj-2017-0024
引用本文: 郭锐, 刘磊. 椭球罩作用下的水下爆炸冲击波反射聚焦模型[J]. 爆炸与冲击, 2018, 38(1): 174-182. doi: 10.11883/bzycj-2017-0024
GUO Rui, LIU Lei. Modeling on the reflection and focusing process of the underwater explosion shock waves by an ellipsoidal reflector[J]. Explosion And Shock Waves, 2018, 38(1): 174-182. doi: 10.11883/bzycj-2017-0024
Citation: GUO Rui, LIU Lei. Modeling on the reflection and focusing process of the underwater explosion shock waves by an ellipsoidal reflector[J]. Explosion And Shock Waves, 2018, 38(1): 174-182. doi: 10.11883/bzycj-2017-0024

椭球罩作用下的水下爆炸冲击波反射聚焦模型

doi: 10.11883/bzycj-2017-0024
基金项目: 

国家自然科学基金项目 11102088

中央高校基本科研业务费专项基金项目 30915118821

高等学校博士学科点专项科研基金项目 20133219110019

详细信息
    作者简介:

    郭锐(1980—),男,博士,副教授,guorui@njust.edu.cn

  • “第十一届全国爆炸力学学术会议”推荐论文
  • 中图分类号: O382.1;TB56

Modeling on the reflection and focusing process of the underwater explosion shock waves by an ellipsoidal reflector

  • 摘要: 基于冲击波传播、非线性反射和聚焦理论,建立水下爆炸冲击波在椭球罩作用下的反射聚焦模型。讨论自由传播、壁面反射和定向聚焦阶段的冲击波特性和压力计算方法,利用波前和波法线的近似方程构建压力场的数值计算域,进而模拟聚焦过程,并与现有实验结果进行对比,结果表明:所建模型可为正聚焦压力提供满足工程精度的预测,并能描述水下冲击波及产生的拉伸波聚焦过程中的一些细节;椭球罩能有效地聚焦水下冲击波,在动力学焦点附近获得有效增益区,在近轴方向上明显削弱冲击波压力衰减;理想条件下的动力学焦点一般位于几何焦点之前,但实际的反射罩变形和背向位移将使其发生后迁,甚至能越过几何焦点。
    1)  “第十一届全国爆炸力学学术会议”推荐论文
  • 图  1  冲击波在椭球罩作用下的非线性聚焦

    Figure  1.  Nonlinear focusing of shock waves by an ellipsoidal reflector

    图  2  非线性规则反射中反射角与入射角关系

    Figure  2.  Incident angle versus reflection angle in nonlinear regular reflection

    图  3  非线性和线性反射波面变化过程

    Figure  3.  Variation process of wave surface in nonlinear reflection against linear case

    图  4  反射聚焦过程的波前与波法线几何形状

    Figure  4.  Normal lines and fronts of shock waves in the focusing process

    图  5  直达波压力与距离关系的双对数曲线

    Figure  5.  Double logarithmic curve of direct peak pressure vs. distance

    图  6  聚焦压力脉动周期与距离关系曲线

    Figure  6.  Fluctuating period of focusing pressure vs. distance

    图  7  外聚焦的初始波前压力数值解与近似分布

    Figure  7.  Numerical solutions of pressures on initial wave front in outside focusing process and associated approximate distribution

    图  8  轴向压力波形对比

    Figure  8.  Comparison of axial pressure profiles

    图  9  压力场随时间的变化过程

    Figure  9.  Pressure field of underwater shock waves vs. propagation time

    图  10  聚焦压力峰值分布

    Figure  10.  Distribution of peak pressures of focusing waves

    图  11  聚焦压力增益分布

    Figure  11.  Distribution of pressures gains of focusing waves

  • [1] CLURE S M, WEINBERGER T. Extracorporeal shock wave therapy: Clinical applications and regulation[J]. Clinical Techniques in Equine Practice, 2003, 2(4):358-367. doi: 10.1053/j.ctep.2004.04.007
    [2] 李宁, 雷开卓, 黄建国, 等.水下冲击波聚焦声场非线性建模与分析[J].系统仿真学报, 2011, 23(1):61-64. http://d.wanfangdata.com.cn/Periodical_xtfzxb201101013.aspx

    LI Ning, LEI Kaizhuo, HUANG Jianguo, et al. Nonlinear modeling and analysis of underwater shock wave focusing sound field[J]. Journal of System Simulation, 2011, 23(1):61-64. http://d.wanfangdata.com.cn/Periodical_xtfzxb201101013.aspx
    [3] 陈景秋, 韦春霞, 邓艇, 等.体外冲击波碎石技术的力学机理的研究[J].力学进展, 2007, 37(4):590-599. doi: 10.6052/1000-0992-2007-4-J2006-139

    CHEN Jingqiu, WEI Chunxia, DENG Ting, et al. Studies on mechanical mechanism about stone comminution and tissue trauma in extracorporeal shock wave lithotripsy[J]. Advances in Mechanics, 2007, 37(4):590-599. doi: 10.6052/1000-0992-2007-4-J2006-139
    [4] RASSWEILER J J, KNOLL T, KÖHRMANN K U, et al. Shock wave technology and application: an update[J]. European. Urology, 2011, 59(5):784-796. doi: 10.1016/j.eururo.2011.02.033
    [5] MÜLLER H M. Focusing of shock waves in water by different ellipsoidal reflectors[C]//Proceedings of the 17th International Symposium on Shock Waves and Shock Tubes, Pennsylvania, USA, 1990: 143-148.
    [6] 陈景秋.激波聚焦问题的CCW数值解[J].重庆大学学报, 1992, 15(2):27-31. http://www.cqvip.com/QK/92166X/199202/966939.html

    CHEN Jingqiu. Numerical solutions of shock wave focusing with CCW method[J]. Journal of Chongqing University, 1992, 15(2):27-31. http://www.cqvip.com/QK/92166X/199202/966939.html
    [7] 韦春霞, 张永祥, 张晓艳, 等.球面压电式ESWL聚焦的实际焦点的数值分析[J].重庆大学学报, 2009, 32(1):21-26. doi: 10.11835/j.issn.1000-582X.2009.01.005

    WEI Chunxia, ZHANG Yongxiang, ZHANG Xiaoyan, et al. Numerical analysis of the shpehrical surface piezoelectricity ceramics extracorporeal shock wave lithotripsy launch[J]. Journal of Chongqing University, 2009, 32(1):21-26. doi: 10.11835/j.issn.1000-582X.2009.01.005
    [8] 雷开卓, 李宁, 黄建国, 等.椭球反射罩聚焦特性实验研究[J].西北工业大学学报, 2010, 28(2):102-106. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_xbgydxxb201001021

    LEI Kaizhuo, LI Ning, HUANG Jianguo, et al. Experimental research on focusing characteristics of the concave ellipsoidal reflectors[J]. Journal of Northwestern Polytechnical University, 2010, 28(2):102-106. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_xbgydxxb201001021
    [9] TAIEB D, RIBERT G, HADJADJ A. Numerical simulations of shock focusing over concave surfaces[J]. AIAA Journal, 2010, 48(8):1739-1747. doi: 10.2514/1.J050199
    [10] OSHITA D, HAMID S, HOSSEINI R, et al. Time-resolved high-speed visualization and analysis of underwater shock wave focusing generated by a magnetic pulse compression unit[J]. IEEE Transactions on Plasma Science, 2012, 40(10):2395-2400. doi: 10.1109/TPS.2012.2187541
    [11] 张振福. 水下冲击波聚焦的数值模拟与实验研究[D]. 长沙: 国防科技大学, 2012. http: //cdmd. cnki. com. cn/Article/CDMD-90002-1014048265. htm

    ZHANG Zhenfu. Numerical and experimental investigations on underwater shock wave focusing[D]. Changsha: National University of Defense Technology, 2012. http: //cdmd. cnki. com. cn/Article/CDMD-90002-1014048265. htm
    [12] COLEMAN A J, CHOI M J, SAUNDERS J E. Theoretical predictions of the acoustic pressure generated by a shock wave lithotripter[J]. Ultrasound in Medicine & Biology, 1991, 17(3):245-255.
    [13] HAMlLTON M F. Transient axial solution for the reflection of a spherical wave from a concave ellipsoidal mirror[J]. Journal of the Acoustical Society of America, 1993, 93(3):1256-1266. doi: 10.1121/1.405410
    [14] 王鸿樟, 于洪斌, 黄平.连续球面波在凹椭球面上反射的聚焦声场[J].上海交通大学学报, 1996(1):65-69. http://www.cnki.com.cn/Article/CJFDTOTAL-SHJT601.011.htm

    WANG Hongzhang, YU Hongbin, HUANG Ping. Focused sound field due to reflection of spherical continuous wave from concave ellipsoidal surface[J]. Journal of Shanghai Jiaotong University, 1996(1):65-69. http://www.cnki.com.cn/Article/CJFDTOTAL-SHJT601.011.htm
    [15] CATES J E, STURTEVANT B. Shock wave focusing using geometrical shock dynamics[J]. Physics of Fluids, 1997, 9(10):3058-3068. doi: 10.1063/1.869414
    [16] ZHOU Y, ZHONG P. The effect of reflector geometry on the acoustic field and bubble dynamics produced by an electrohydraulic shock wave lithotripter[J]. Journal of the Acoustical Society of America, 2006, 119(6):3625-3636. doi: 10.1121/1.2195074
    [17] LIU L, GUO R, CHEN L, et al. A prediction model for two-dimensional pressure distribution from underwater shock wave focusing by an ellipsoidal reflector[J]. Journal of the Acoustical Society of America, 2016, 140(6):4506-4516. doi: 10.1121/1.4971327
    [18] COURANT R, FRIEDRCHS R. Supersonic flow and shock waves[M]. New York: Interscience Publishers Inc., 1956:327-331.
    [19] COLE R H. Underwater explosions[M]. Princeton: Princeton University Press, 1948:110-120.
    [20] CHURCH C C. A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter[J]. Journal of the Acoustical Society of America, 1989, 86(1):218-227. http://www.ncbi.nlm.nih.gov/pubmed/2754108
  • 期刊类型引用(2)

    1. 张硕, 龚艺, 刘真民, 李绍颖, 商娅娜, 刘书朋, 陈娜, 张恒. 冲击波椭球罩聚焦性研究:有限元仿真与光纤传感器验证. 工业控制计算机. 2025(06) 百度学术
    2. 杨科,周章涛,马宏昊,姚象洋,傅力衡,徐庆涛,沈兆武. 邻空气域装药水下爆炸压力场特征研究. 兵工学报. 2025(01): 70-80 . 百度学术

    其他类型引用(1)

  • 加载中
推荐阅读
考虑壳体运动惯性约束效应的装药燃烧裂纹网络反应演化理论模型
教继轩 等, 爆炸与冲击, 2025
隧道表面爆破地震波的产生机制及传播特征
蒙贤忠 等, 爆炸与冲击, 2024
基于高压气体驱动的爆炸波模拟激波管冲击波衰减历程控制方法
程帅 等, 爆炸与冲击, 2024
基于自由场爆炸的猪鼓膜破裂规律实验研究
向书毅 等, 爆炸与冲击, 2024
乳化炸药水下爆炸载荷输出特性实验研究
郑欣颖 等, 高压物理学报, 2022
20 l球型爆炸装置气液输送管段结构的优化设计
李峰 等, 高压物理学报, 2023
基于有效冲量的水下爆炸冲击波对平板结构的毁伤准则
毛致远 等, 高压物理学报, 2023
Anion-enrichment interface enables high-voltage anode-free lithium metal batteries
Mao, Minglei et al., NATURE COMMUNICATIONS, 2023
Experimental verification of ultra-broadband vibration reduction of underwater vehicle pressure-resisting shells using acoustic black holes
THIN-WALLED STRUCTURES, 2025
The wave slamming dynamic characteristics of the installation of subsea manifold during splash zone considering air cushion effect
OCEAN ENGINEERING, 2025
Powered by
图(11)
计量
  • 文章访问数:  5900
  • HTML全文浏览量:  1368
  • PDF下载量:  226
  • 被引次数: 3
出版历程
  • 收稿日期:  2017-01-17
  • 修回日期:  2017-03-02
  • 刊出日期:  2018-01-25

目录

    /

    返回文章
    返回