静水压力对岩石在等离子体冲击下压裂效果的影响

付荣耀 孙鹞鸿 徐旭哲 严萍

付荣耀, 孙鹞鸿, 徐旭哲, 严萍. 静水压力对岩石在等离子体冲击下压裂效果的影响[J]. 爆炸与冲击, 2018, 38(5): 1051-1056. doi: 10.11883/bzycj-2017-0057
引用本文: 付荣耀, 孙鹞鸿, 徐旭哲, 严萍. 静水压力对岩石在等离子体冲击下压裂效果的影响[J]. 爆炸与冲击, 2018, 38(5): 1051-1056. doi: 10.11883/bzycj-2017-0057
FU Rongyao, SUN Yaohong, XU Xuzhe, YAN Ping. Effect of hydrostatic pressure on fracture of rock subjected to plasma impact[J]. Explosion And Shock Waves, 2018, 38(5): 1051-1056. doi: 10.11883/bzycj-2017-0057
Citation: FU Rongyao, SUN Yaohong, XU Xuzhe, YAN Ping. Effect of hydrostatic pressure on fracture of rock subjected to plasma impact[J]. Explosion And Shock Waves, 2018, 38(5): 1051-1056. doi: 10.11883/bzycj-2017-0057

静水压力对岩石在等离子体冲击下压裂效果的影响

doi: 10.11883/bzycj-2017-0057
基金项目: 

国家自然科学基金项目 51577176

详细信息
    作者简介:

    付荣耀(1986-), 男, 博士研究生, 助理研究员, furongyao@mail.iee.ac.cn

  • 中图分类号: O347.3

Effect of hydrostatic pressure on fracture of rock subjected to plasma impact

  • 摘要: 为了了解与掌握深井下水中放电冲击波对岩石的破碎作用规律,建立了静水压力高达35 MPa的电脉冲压裂装置,可模拟深井近3 000 m下的围压,并进行了不同静水压下等离子体冲击压裂实验。电脉冲压裂装置最高工作电压20 kV,最大储能40 kJ。在0~25 MPa的静水压力条件下,对6块砂岩岩样进行了冲击压裂实验。实验结果表明,随着静水压力的升高,相同放电条件下压裂产生的裂缝长度和宽度明显降低。所以静水压力的升高将使得岩样损伤范围减小,孔隙度以及渗透率提升幅度下降。静水压力对冲击压裂后裂缝的形成、分布、生长具有明显的影响。与常压下形成的裂缝相比,施加围压后裂缝多集中在电极处,数量多,但是长度较短,存在不同程度的弯曲,甚至局部区域出现了环形裂缝。
  • 图  1  实验装置

    Figure  1.  Experimental equipment

    图  2  脉冲源电路结构图

    Figure  2.  Schematic of the pulsed power system

    图  3  砂岩岩样

    Figure  3.  Sandstone samples

    图  4  砂岩试样CO1压裂图片

    Figure  4.  Fracture pictures of sandstone samples CO1

    图  5  岩样1裂缝图片

    Figure  5.  Fracture pictures of sandstone sample 1

    图  6  岩样2裂缝图片

    Figure  6.  Fracture pictures of sandstone sample 2

    图  7  岩样3裂缝图片

    Figure  7.  Fracture pictures of sandstone sample 3

    图  8  岩样4裂缝图片

    Figure  8.  Fracture pictures of sandstone sample 4

    图  9  岩样5裂缝图片

    Figure  9.  Fracture pictures of sandstone sample 5

    表  1  压裂实验数据

    Table  1.   Data for fracture experiments

    砂岩编码 静水压力/MPa 工作电压/kV 放电次数 单次放电能量/kJ 裂缝高度/mm 裂缝径向长度/mm 井内裂缝条数
    1 5 15 5 22.5 200 190,150 5
    18 8 32.4
    2 10 13 4 16.9 200 20,30 3
    15 3 22.5
    18 10 32.4
    15 4 22.5
    18 15 32.4
    3 15 18 20 32.4 200 170,170 5,一条主缝
    4 20 15 12 22.5 170 60,50 4
    18 5 32.4
    5 25 18 20 32.4 110 5 多裂缝,一条主缝
    CO1 0 15 5 22.5 350 70 一条主缝
    下载: 导出CSV
  • [1] 石崇兵, 李传乐.高能气体压裂技术的发展趋势[J].西安石油学院学报, 2000, 15(5):17-21. doi: 10.3969/j.issn.1673-064X.2000.05.006

    SHI Chongbing, LI Chuanle. Development tendency of high energy gas fracturing technique[J]. Journal of Xi'an Petroleum Institute, 2000, 15(5):17-21. doi: 10.3969/j.issn.1673-064X.2000.05.006
    [2] 张保平, 方竞, 田国荣, 等.水力压裂中的近井筒效应[J].岩石力学与工程学报, 2004, 23(14):2476-2479. doi: 10.3321/j.issn:1000-6915.2004.14.034

    ZHANG Baoping, FANG Jing, TIAN Guorong, et al. Near wellbore effects in hydraulic fracturing[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(14):2476-2479. doi: 10.3321/j.issn:1000-6915.2004.14.034
    [3] 周健, 陈勉, 金衍, 等.裂缝性储层水力裂缝扩展机理试验研究[J].石油学报, 2007, 28(5):109-113. doi: 10.3321/j.issn:0253-2697.2007.05.020

    ZHOU Jian, CHEN Mian, JIN Yan, et al. Experimental study on propagation mechanism of hydraulic fracture in naturally fractured reservoir[J]. Acta Petrolei Sinica, 2007, 28(5):109-113. doi: 10.3321/j.issn:0253-2697.2007.05.020
    [4] RUTGERS W R, JONG I D. Multi-tip sparker for the generation of acoustic pulses[J]. Sensor Review, 2003, 23(1):55-59. doi: 10.1108/02602280310457974
    [5] SUN Y, FU R, FAN A, et al. Study of rock fracturing generated by pulsed discharging under confining pressure[C]//2015 IEEE Pulsed Power Conference (PPC). Austin, TX, USA: IEEE, 2015: 1-4. DOI: 10.1109/PPC.2015.7296927.
    [6] BEES G L, TYDEMAN A. Capacitor charging power supply design for pulse to pulse repeatability applications[C]//Digest of Technical Papers: 12th IEEE International Pulsed Power Conference (Cat. No.99CH36358). Monterey, CA, USA: IEEE, 1999, 1: 397-398. DOI: 10.1109/PPC.1999.825494.
    [7] BIEBACH J, EHRHART P, MULLER A, et al. Compact modular power supplies for superconduting inductive storage and for capacitor charging[J]. IEEE Trans on Magnetics, 2001, 37(1):353-357. doi: 10.1109/20.911853
    [8] POLLARD B C, NELMS R M.Using the series parallel resonant converter in capacitor charging application[C]//Proceedings of APEC'92 Seventh Annual Applied Power Electronics Conference and Exposition. MA, USA, USA: IEEE, 1992: 245-252. DOI: 10.1109/APEC.1992.228405.
    [9] 杨小卫, 严萍, 孙鹞鸿, 等.35kV/0.7A高压变频恒流充电电源[J].高电压技术, 2006, 32(5):54-56. doi: 10.3969/j.issn.1003-6520.2006.05.016

    YANG Xiaowei, YAN Ping, SUN Yaohong, et al. 35kV/0.7A high voltage high frequency constant charging power supply[J]. High Voltage Engineering, 2006, 32(5):54-56. doi: 10.3969/j.issn.1003-6520.2006.05.016
    [10] FORSYTH A J, WARD G A, MOLLOV S V. Extended fundamental frequency analysis of the LCC resonant converter[J]. IEEE Transactions on Power Electronics, 2003, 18(6):1286-1292. doi: 10.1109/TPEL.2003.818826
    [11] 邵建设, 严萍.高压电容器充电电源谐振变换器的定频控制[J].高电压技术, 2006, 32(11):107-110. doi: 10.3969/j.issn.1003-6520.2006.11.027

    SHAO Jianshe, YAN Ping. Constant switching frequency control of resonant converter of high voltage capacitor charging power supply[J]. High Voltage Engineering, 2006, 32(11):107-110. doi: 10.3969/j.issn.1003-6520.2006.11.027
    [12] 苏建仓, 王利民, 丁永忠, 等.串联谐振充电电源分析与设计[J].强激光与粒子束, 2004, 16(12):1611-1614. http://cdmd.cnki.com.cn/Article/CDMD-10487-2009035686.htm

    SU Jiancang, WANG Limin, DING Yongzhong, et al. Analysis and design of series resonant charging power supply[J]. High Power Laser and Particle Beams, 2004, 16(12):1611-1614. http://cdmd.cnki.com.cn/Article/CDMD-10487-2009035686.htm
    [13] NELMS R M, SCHATZ J E. A capacitor charging power supply utilizing a ward converter[J]. IEEE Transactions on Industrial Electronics, 1992, 39(5):421-428. doi: 10.1109/41.161473
    [14] 张东辉, 严萍.高压电容器充电电源的研究[J].高电压技术, 2008, 34(7):1450-1455. http://d.old.wanfangdata.com.cn/Periodical/gdyjs200807026

    ZHANG Donghui, YAN Ping. Development in high voltage capacitor charging power supply[J]. High Voltage Engineering, 2008, 34(7):1450-1455 http://d.old.wanfangdata.com.cn/Periodical/gdyjs200807026
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  5739
  • HTML全文浏览量:  1805
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-22
  • 修回日期:  2017-04-24
  • 刊出日期:  2018-09-25

目录

    /

    返回文章
    返回