组合型多孔材料对容器管道系统内甲烷/空气的抑爆效果

邵继伟 庄春吉 王志荣 黄予楠 卢雯婷

邵继伟, 庄春吉, 王志荣, 黄予楠, 卢雯婷. 组合型多孔材料对容器管道系统内甲烷/空气的抑爆效果[J]. 爆炸与冲击, 2018, 38(4): 905-912. doi: 10.11883/bzycj-2017-0064
引用本文: 邵继伟, 庄春吉, 王志荣, 黄予楠, 卢雯婷. 组合型多孔材料对容器管道系统内甲烷/空气的抑爆效果[J]. 爆炸与冲击, 2018, 38(4): 905-912. doi: 10.11883/bzycj-2017-0064
SHAO Jiwei, ZHUANG Chunji, WANG Zhirong, HUANG Yunan, LU Wenting. Explosion suppression effect of CH4/air by combined porous materials in a container piping system[J]. Explosion And Shock Waves, 2018, 38(4): 905-912. doi: 10.11883/bzycj-2017-0064
Citation: SHAO Jiwei, ZHUANG Chunji, WANG Zhirong, HUANG Yunan, LU Wenting. Explosion suppression effect of CH4/air by combined porous materials in a container piping system[J]. Explosion And Shock Waves, 2018, 38(4): 905-912. doi: 10.11883/bzycj-2017-0064

组合型多孔材料对容器管道系统内甲烷/空气的抑爆效果

doi: 10.11883/bzycj-2017-0064
基金项目: 

国家自然科学基金项目 51376088

浙江省大学生科技创新活动项目 2016R424008

宁波工程学院2015年度校级科研项目 2015001

详细信息
    作者简介:

    邵继伟(1997-), 男, 本科生

    通讯作者:

    庄春吉, zhuangcj@nbut.edu.cn

  • 中图分类号: O381;TE687

Explosion suppression effect of CH4/air by combined porous materials in a container piping system

  • 摘要: 为研究多孔材料对可燃气体的抑爆效果,选取了3类6种多孔材料分别组合后进行实验研究。以甲烷/空气预混气体作为研究对象,利用自制薄型铁环将多孔材料固定在密闭容器管道系统内,对比分析了薄型铁环、单层型多孔材料、双层组合型多孔材料和三层组合型多孔材料的抑爆效果。结果表明:薄型铁环增强了气体爆炸强度,铁环后爆炸压力最大;多孔材料抑爆效果明显,双层组合型多孔材料抑爆效果相比单层型多孔材料和三层组合型多孔材料稳定;抑爆效果最佳的组合型多孔材料为Al2O3 10 mm/30 PPI+SiC 20 mm/20 PPI,爆炸压力抑制效果最佳的组合型多孔材料为Al2O3 10 mm/30 PPI+Fe-Ni 10 mm/90 PPI+SiC 20 mm/10 PPI。
  • 图  1  实验装置示意图

    Figure  1.  Schematics of the experimental device

    图  2  多孔材料固定方式

    Figure  2.  Installation of porous materials

    图  3  无多孔材料情况下密闭容器管道系统内爆炸压力随时间的变化

    Figure  3.  Explosion pressure varying with time in closed vessel piping system without porous materials

    图  4  加入单层多孔材料后密闭容器管道系统内爆炸压力随时间的变化

    Figure  4.  Explosion pressure varying with time in closed vessel piping system with single-layer porous materials

    图  5  加入单层多孔材料后位置4、5、6处的最大爆炸压力

    Figure  5.  Maximum explosion pressures at positions 4, 5, 6 with single-layer porous materials

    图  6  加入双层组合型多孔材料后密闭容器管道系统内爆炸压力随时间的变化

    Figure  6.  Explosion pressure varying with time in closed vessel piping system with double-layer combination porous materials

    图  7  加入双层组合型多孔材料后位置4、5、6处的最大爆炸压力

    Figure  7.  Maximum explosion pressures at positions 4, 5, 6 with double-layer combination porous materials

    图  8  加入三层组合型多孔材料后密闭容器管道系统内爆炸压力随时间的变化

    Figure  8.  Explosion pressure varying with time in closed vessel piping system with three-layer combination porous materials

    图  9  加入三层组合型多孔材料后位置4、5、6处的最大爆炸压力

    Figure  9.  Maximum explosion pressures at positions 4, 5, 6 with three-layer combination porous materials

    表  1  多孔材料几何参数

    Table  1.   Geometrical parameters of porous materials

    多孔材料 厚度/mm 孔径/PPI 体积密度/(g·cm-3) 通孔率/%
    Fe-Ni 10 90 0.417 2 ≥98
    10 40 0.269 4 ≥98
    SiC 20 20 0.603 0 80~90
    20 10 0.579 5 80~90
    Al2O3 10 50 0.580 3 80~90
    10 30 0.724 9 80~90
    下载: 导出CSV

    表  2  多孔材料抑爆实验方案

    Table  2.   Experimental scheme of porous materials for suppressing explosion

    分组 实验方案
    A (1) None (2) Iron hoop
    B (1) Fe-Ni 10 mm/90 PPI (2) Fe-Ni 10 mm/40 PPI (3) SiC 20 mm/20 PPI
    (4) SiC 20 mm/10 PPI (5) Al2O3 10 mm/50 PPI (6) Al2O3 10 mm/30 PPI
    C (1) Fe-Ni 10 mm/90 PPI+SiC 20 mm/20 PPI     (2) Fe-Ni 10 mm/90 PPI+SiC 20 mm/10 PPI
    (3) Fe-Ni 10 mm/40 PPI+SiC 20 mm/20 PPI     (4) Fe-Ni 10 mm/40 PPI+SiC 20 mm/10 PPI
    (5) Fe-Ni 10 mm/90 PPI+Al2O3 10 mm/50 PPI   (6) Fe-Ni 10 mm/90 PPI+Al2O3 10 mm/30 PPI
    (7) Fe-Ni 10 mm/40 PPI+Al2O3 10 mm/50 PPI   (8) Fe-Ni 10 mm/40 PPI+Al2O3 10 mm/30 PPI
    (9) Al2O3 10 mm/50 PPI+SiC 20 mm/20 PPI     (10) Al2O3 10 mm/30 PPI+SiC 20 mm/20 PPI
    (11) Al2O3 10 mm/50 PPI+SiC 20 mm/10 PPI    (12) Al2O3 10 mm/30 PPI+SiC 20 mm/10 PPI
    D (1) Al2O3 10 mm/50 PPI+Fe-Ni 10 mm/90 PPI+SiC 20 mm/20 PPI
    (2) Al2O3 10 mm/30 PPI+Fe-Ni 10 mm/90 PPI+SiC 20 mm/20 PPI
    (3) Al2O3 10 mm/50 PPI+Fe-Ni 10 mm/90 PPI+SiC 20 mm/10 PPI
    (4) Al2O3 10 mm/30 PPI+Fe-Ni 10 mm/90 PPI+SiC 20 mm/10 PPI
    (5) Al2O3 10 mm/50 PPI+Fe-Ni 10 mm/40 PPI+SiC 20 mm/20 PPI
    (6) Al2O3 10 mm/30 PPI+Fe-Ni 10 mm/40 PPI+SiC 20 mm/20 PPI
    (7) Al2O3 10 mm/50 PPI+Fe-Ni 10 mm/40 PPI+SiC 20 mm/10 PPI
    (8) Al2O3 10 mm/30 PPI+Fe-Ni 10 mm/40 PPI+SiC 20 mm/10 PPI
    下载: 导出CSV

    表  3  在无多孔材料的情况下密闭容器管道系统内气体爆炸特征参数

    Table  3.   Characteristic parameters of gas explosion in closed vessel piping system without porous materials

    实验编号 pmax/MPa (dp/dt)max/(MPa·s-1) K/(MPa2·s-1)
    位置4 位置5 位置4 位置5 位置4 位置5
    A-1 0.450 0.476 22.611 19.770 10.175 9.412
    A-2 0.411 0.580 6.318 7.179 2.597 4.164
    下载: 导出CSV

    表  4  加入单层型多孔材料后密闭容器管道系统内气体爆炸特征参数

    Table  4.   Characteristic parameters of gas explosion in closed vessel piping system with single-layer porous materials

    实验编号 pmax/MPa (dp/dt)max/(MPa·s-1) K/(MPa2·s-1)
    位置4 位置5 位置4 位置5 位置4 位置5
    B-1 0.383 0.438 2.445 2.855 0.936 1.250
    B-2 0.373 0.430 1.990 2.820 0.742 1.213
    B-3 0.368 0.424 1.945 1.810 0.716 0.767
    B-4 0.413 0.549 5.330 7.260 2.201 3.986
    B-5 0.389 0.449 2.435 2.890 0.947 1.298
    B-6 0.354 0.403 1.835 1.840 0.650 0.742
    下载: 导出CSV

    表  5  加入双层组合型多孔材料后密闭容器管道系统内气体爆炸特征参数

    Table  5.   Characteristic parameters of gas explosion in closed vessel piping system with double-layer combination porous materials

    实验编号 pmax/MPa (dp/dt)max/(MPa·s-1) K/(MPa2·s-1)
    位置4 位置5 位置4 位置5 位置4 位置5
    C-1 0.386 0.436 2.685 2.995 1.036 1.306
    C-2 0.360 0.405 3.075 3.160 1.107 1.280
    C-3 0.355 0.394 2.495 2.210 0.886 0.871
    C-4 0.377 0.426 1.925 2.185 0.726 0.931
    C-5 0.362 0.401 2.030 1.825 0.735 0.732
    C-6 0.359 0.409 1.785 1.990 0.641 0.814
    C-7 0.352 0.393 1.500 1.590 0.528 0.625
    C-8 0.353 0.400 2.225 2.630 0.785 1.052
    C-9 0.342 0.382 1.545 1.610 0.631 0.615
    C-10 0.345 0.386 1.460 1.510 0.504 0.583
    C-11 0.377 0.430 2.820 2.870 1.063 1.234
    C-12 0.383 0.446 2.890 3.335 1.107 1.487
    下载: 导出CSV

    表  6  加入三层组合型多孔材料后密闭容器管道系统内气体爆炸特征参数

    Table  6.   Characteristic parameters of gas explosion in closed vessel piping system with three-layer combination porous materials

    实验编号 pmax/MPa (dp/dt)max/(MPa·s-1) K/(MPa2·s-1)
    位置4 位置5 位置4 位置5 位置4 位置5
    D-1 0.354 0.397 4.038 2.290 1.429 0.909
    D-2 0.401 0.458 4.340 2.500 1.740 1.145
    D-3 0.348 0.392 3.270 1.950 1.138 0.764
    D-4 0.334 0.376 3.090 1.975 1.032 0.743
    D-5 0.353 0.386 3.720 1.830 1.313 0.706
    D-6 0.400 0.460 3.410 3.285 1.364 1.511
    D-7 0.362 0.411 3.940 2.130 1.426 0.875
    D-8 0.369 0.419 2.295 2.385 0.847 0.999
    下载: 导出CSV
  • [1] 崔克清, 张礼敬, 陶刚.化工安全设计[M].北京:化学工业出版社, 2004:1-2.
    [2] ROBERT Z. Deflagration suppression using expanded metal mesh and polymer foams[J]. Journal of Loss Prevention in the Process Industries, 2007, 20(4):659-663. https://www.deepdyve.com/lp/elsevier/deflagration-suppression-using-expanded-metal-mesh-and-polymer-foams-PeaLrTuryo
    [3] 孙建华, 李艳霞, 魏春荣, 等.泡沫铁镍金属抑制瓦斯爆炸冲击波的实验研究[J].功能材料, 2013, 44(10):1390-1394. doi: 10.3969/j.issn.1001-9731.2013.10.005

    SUN Jianhua, LI Yanxia, WEI Chunrong, et al. Experimental study on the porous foam iron-nickel metal inhibition of gas explosion wave[J]. Journal of Functional Materials, 2013, 44(10):1390-1394. doi: 10.3969/j.issn.1001-9731.2013.10.005
    [4] VASIL'EV A A. Near-limiting detonation in channels with porous walls[J]. Combustion, Explosion, and Shock Waves, 1994, 30(1):101-106. doi: 10.1007/BF00787892
    [5] DIAMANTIS D J, MASTORAKOS E, GOUSSIS D A. Simulations of premixed combustion in porous media[J]. Combustion Theory and Modelling, 2002, 6(3):383-411. doi: 10.1088/1364-7830/6/3/301
    [6] JOO H I, DUNCAN K, CICCARELLI G. Flame quenching performance of ceramic foam[J]. Combustion Science and Technology, 2006, 178(10/11):1755-1769. doi: 10.1080/00102200600788692?needAccess=true
    [7] 喻健良, 蔡涛, 李岳, 等.丝网结构对爆炸气体淬熄的试验研究[J].燃烧科学与技术, 2008, 14(2):97-100. http://cdmd.cnki.com.cn/Article/CDMD-10141-2005070890.htm

    YU Jianliang, CAI Tao, LI Yue, et al. Experiment to quench explosive gas with structure of wire mesh[J]. Journal of Combustion Science and Technology, 2008, 14(2):97-100. http://cdmd.cnki.com.cn/Article/CDMD-10141-2005070890.htm
    [8] NIE B, HE X, ZHANG R, et al. The roles of foam ceramics in suppression of gas explosion overpressure and quenching of flame propagation[J]. Journal of Hazardous Materials, 2011, 192(2):741-747. doi: 10.1016/j.jhazmat.2011.05.083
    [9] 魏春荣, 徐敏强, 王树桐, 等.多孔材料抑制瓦斯爆炸火焰波的实验研究[J].中国矿业大学学报, 2013, 42(2):206-213. http://www.cnki.com.cn/Article/CJFDTotal-ZGKD201302007.htm

    WEI Chunrong, XU Minqiang, WANG Shutong, et al. Experiment of porous materials for suppressing the gas explosion flame wave[J]. Journal of China University of Mining and Technology, 2013, 42(2):206-213. http://www.cnki.com.cn/Article/CJFDTotal-ZGKD201302007.htm
    [10] 石油化工静电接地设计规范: SH/T 3097-2017[S]. 北京: 国家石油和化学工业局, 2000: 6.
    [11] 尤明伟, 喻源, 蒋军成, 等.不同管长条件下连通容器预混气体的爆炸[J].燃烧科学与技术, 2012, 18(3):256-259. http://www.oalib.com/paper/5140604

    YOU Mingwei, YU Yuan, JIANG Juncheng, et al. Premixed flammable gas explosion in containers connected by pipes with different lengths[J]. Journal of Combustion Science and Technology, 2012, 18(3):256-259. http://www.oalib.com/paper/5140604
    [12] CUI Y Y, WANG Z R, ZHOU K B, et al. Effect of wire mesh on double-suppression of CH4/air mixture explosions in a spherical vessel connected to pipelines[J]. Journal of Loss Prevention in the Process Industries, 2017, 45:66-77. https://www.researchgate.net/publication/272390393_A_high-precision_method_for_calculating_the_pressure_drop_across_wire_mesh_filters
    [13] ZHANG J, SUN Z, ZHENG Y, et al. Coupling effects of foam ceramics on the flame and shock wave of gas explosion[J]. Safety Science, 2012, 50(4):797-800. doi: 10.1016/j.ssci.2011.08.031
    [14] OH K H, KIM H, KIM J B, et al. A study on the obstacle-induced variation of the gas explosion characteristics[J]. Journal of Loss Prevention in the Process Industries, 2001, 14(6):597-602. doi: 10.1016/S0950-4230(01)00054-7
    [15] 韩丰磊. 多孔材料抑制火焰传播的实验研究及数值模拟[D]. 大连: 大连理工大学, 2008: 27-34. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1247906
    [16] SUN J, YI Z, WEI C, et al. The comparative experimental study of the porous materials suppressing the gas explosion[J]. Procedia Engineering, 2011, 26:954-960. doi: 10.1016/j.proeng.2011.11.2262
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  5073
  • HTML全文浏览量:  1945
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-24
  • 修回日期:  2017-04-08
  • 刊出日期:  2018-07-25

目录

    /

    返回文章
    返回