多次激光冲击导致的Ti17合金层裂

吴俊峰 邹世坤 张永康 孙桂芳 倪中华 曹子文 车志刚

吴俊峰, 邹世坤, 张永康, 孙桂芳, 倪中华, 曹子文, 车志刚. 多次激光冲击导致的Ti17合金层裂[J]. 爆炸与冲击, 2018, 38(5): 1091-1098. doi: 10.11883/bzycj-2017-0082
引用本文: 吴俊峰, 邹世坤, 张永康, 孙桂芳, 倪中华, 曹子文, 车志刚. 多次激光冲击导致的Ti17合金层裂[J]. 爆炸与冲击, 2018, 38(5): 1091-1098. doi: 10.11883/bzycj-2017-0082
WU Junfeng, ZOU Shikun, ZHANG Yongkang, SUN Guifang, NI Zhonghua, CAO Ziwen, CHE Zhigang. Spall of Ti17 alloy induced by laser shock peening with multiple shots[J]. Explosion And Shock Waves, 2018, 38(5): 1091-1098. doi: 10.11883/bzycj-2017-0082
Citation: WU Junfeng, ZOU Shikun, ZHANG Yongkang, SUN Guifang, NI Zhonghua, CAO Ziwen, CHE Zhigang. Spall of Ti17 alloy induced by laser shock peening with multiple shots[J]. Explosion And Shock Waves, 2018, 38(5): 1091-1098. doi: 10.11883/bzycj-2017-0082

多次激光冲击导致的Ti17合金层裂

doi: 10.11883/bzycj-2017-0082
基金项目: 

国家重点研发计划项目 2016YFB1102705

装备预研教育部联合基金项目 6141A02033103

中国博士后科学基金项目 2015M570395

中国博士后科学基金项目 2016T90400

江苏省产学研前瞻性联合研究项目 BY2015070-05

江苏省博士后基金项目 1501028A

江苏省六大人才高峰高层次人才项目 2016-HKHT-001

详细信息
    作者简介:

    吴俊峰(1988-), 男, 硕士, 博士研究生

    通讯作者:

    孙桂芳, gfsun@seu.edu.cn

  • 中图分类号: O346.1;TN249

Spall of Ti17 alloy induced by laser shock peening with multiple shots

  • 摘要: 为研究激光冲击Ti17合金中厚样品的层裂特性和层裂阈值,对样品(厚5 mm)表面进行单点连续1~8次激光冲击,激光工艺参数为:频率1 Hz,脉宽15 ns,激光能量30 J,方形光斑4 mm×4 mm。采用白光干涉仪、超声波无损检测技术和扫描电镜,分析和检测中厚样品冲击区域的表面形貌、内部损伤以及层裂形貌。实验结果表明,连续从4次到5次激光冲击中厚样品的表面凹坑深度增加值最大为64.5%。连续5次激光冲击为中厚样品层裂阈值,层裂面积随冲击次数增加而增加。连续5~8次激光冲击中厚样品层裂厚度的实验值为280~310 μm。层裂机理为韧性微孔洞的形核、增长和汇合,形成晶界失效和晶内失效。研究结果可为激光冲击强化整体叶盘改性提供工艺参考。
  • 图  1  基体Ti17合金的微观组织

    Figure  1.  Microstructure ofas-received Ti17 alloy

    图  2  LSP设备

    Figure  2.  LSP setup

    图  3  水浸法C扫描Ti17合金中厚样品示意图

    Figure  3.  Schematic diagram of a C-scan examination withwater immersion for Ti17 alloy mid-thick sample

    图  4  不同连续激光冲击次数下Ti17合金中厚样品的表面形貌

    Figure  4.  Surface morphology of Ti17 alloy mid-thick sample with different continue LSP shots

    图  5  不同连续激光冲击次数下Ti17合金中厚样品冲击区域的C扫描成像图

    Figure  5.  C-scan images of shot areas of Ti17 alloy mid-thick samplewith different continue LSP shots

    图  6  Ti17合金中厚样品冲击区域中心的横截面特征形貌

    Figure  6.  Cross-sectional characterization morphologies at center of LSP areas of Ti17 alloy mid-thick sample

    图  7  靶材内部层裂形成原理图

    Figure  7.  Schematic diagram of interior spall formation of target

    图  8  单点7次连续激光冲击Ti17合金中厚样品的层裂形貌

    Figure  8.  Spall morphology of Ti17 alloy mid-thickness sample with single spot and successive seven LSP shots

  • [1] ZHANG Y K, LU J Z, REN X D, et al. Effect of laser shock processing on the mechanical properties and fatigue lives of the turbojet engine blades manufactured by LY2 aluminum alloy[J]. Materials and Design, 2009, 30(5):1697-1703. DOI: 10.1016/j.matdes.2008.07.017.
    [2] PEYRE P, FABBRO R, MERRIEN P, et al. Laser shock processing of aluminium alloys:Application to high cycle fatigue behaviour[J]. Materials Science and Engineering:A, 1996, 210(1/2):102-113. DOI: 10.1016/0921-5093(95)10084-9.
    [3] BERGANT Z, TRDAN U, GRUM J. Effects of laser shock processing on high cycle fatigue crack growth rate and fracture toughness of aluminium alloy 6082-T651[J]. International Journal of Fatigue, 2016, 87:444-455. DOI: 10.1016/j.ijfatigue.2016.02.027.
    [4] LU J Z, QI H, LUO K Y, et al. Corrosion behaviour of AISI 304 stainless steel subjected to massive laser shock peening impacts with different pulse energies[J]. Corrosion Science, 2014, 80:53-59. DOI: 10.1016/j.corsci.2013.11.003.
    [5] LUO K Y, WANG C Y, LI Y M, et al. Effects of laser shock peening and groove spacing on the wear behavior of non-smooth surface fabricated by laser surface texturing[J]. Applied Surface Science, 2014, 313:600-606. DOI: 10.1016/j.apsusc.2014.06.029.
    [6] SPANRAD S, TONG J. Characterization of foreign object damage (FOD) and early fatigue crack growth in laser shock peened Ti-6AL-4V aerofoil specimens[J]. Procedia Engineering, 2011, 528(4):2128-2136. DOI: 10.1016/j.proeng.2010.03.188.
    [7] 罗新民, 马辉, 张静文, 等.激光冲击中的"应变屏蔽"和"约束击穿"[J].材料导报, 2010, 24(5):11-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cldb201005003

    LUO Xinmin, MA Hui, ZHANG Jingwen, et al. "Strain-screening" and "constraint-breakdown" in laser shock processing[J]. Materials Review, 2010, 24(5):11-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cldb201005003
    [8] LIU Q, DING K, YE L, et al. Spallation-like phenomenon induced by laser shock peening surface treatment on 7050 aluminum alloy[C]//ATRENS A, BOLAND J N. Structural integrity and fracture: Proceedings of the International Conference, SIF 2004. Brisbane, Australia: School of Mechanical and Mining Engineering Publications, 2004: 235-240. DOI: 10.1142/9789812777973_0024.
    [9] LIU Q, YANG C H, DING K, et al. The effect of laser power density on the fatigue life of laser-shock-peened 7050 aluminium alloy[J]. Fatigue and Fracture of Engineering Materials and Structures, 2007, 30(11):1110-1124. DOI: 10.1111/j.1460-2695.2007.01180.x.
    [10] JARMAKANI H, MADDOX B, WEI C T, et al. Laser shock-induced spalling and fragmentation in vanadium[J]. Acta Materialia, 2010, 58(14):4604-4628. DOI: 10.1016/j.actamat.2010.04.027.
    [11] LESCOUTE E, DE RESSEGUIER T, CHEVALIER J M, et al. Ejection of spalled layers from laser shock-loaded metals[J]. Journal of Applied Physics, 2010, 108(9):93510. DOI: 10.1063/1.3500317.
    [12] DALTON D A, BREWER J L, BERNSTEIN A C, et al. Laser-induced spallation of aluminum and Al alloys at strain rates above 2×106 s-1[J]. Journal of Applied Physics, 2008, 104(1):13526. DOI: 10.1063/1.2949276.
    [13] 翟少栋, 李英华, 彭建祥, 等.平面碰撞与强激光加载下金属铝的层裂行为[J].爆炸与冲击, 2016, 36(6):767-773. DOI: 10.11883/1001-1455(2016)06-0767-07.

    ZHAI Shaodong, LI Yinghua, PENG Jianxiang, et al. Spall behavior of pure aluminum under plate-impact and high energy laser shock loadings[J]. Explosion and Shock Waves, 2016, 36(6):767-773. DOI: 10.11883/1001-1455(2016)06-0767-07.
    [14] TYLER C, MILLETT J C F, BOURNE N K. Spallation in Ti-6Al-4V:Stress measurements and recovery[J]. AIP Conference Proceedings, 2006, 845(1):674-677. DOI: 10.1063/1.2263412.
    [15] BOIDIN X, CHEVRIER P, KLEPACZKO J R, et al. Identification of damage mechanism and validation of a fracture model based on mesoscale approach in spalling of titanium alloy[J]. International Journal of Solids and Structures, 2006, 43(14/15):4595-4615. DOI: 10.1016/j.ijsolstr.2005.06.039.
    [16] FABBRO R, FOURNIER J, BALLARD P, et al. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2):775-784. DOI: 10.1063/1.346783.
    [17] GE M Z, XIANG J Y. Effect of laser shock peening on microstructure and fatigue crack growth rate of AZ31B magnesium alloy[J]. Journal of Alloys and Compounds, 2016, 680:544-552. DOI: 10.1016/j.jallcom.2016.04.179.
    [18] 张建泉, 陈荣华, 强希文, 等.激光产生的激波在靶材中的传播及层裂效应[J].中国激光, 2002, 29(3):197-200. DOI: 10.3321/j.issn:0258-7025.2002.03.002.

    ZHANG Jianquan, CHEN Ronghua, QIANG Xiwen, et al. Propagation and spall effect of shock wave induced by laser in targets[J]. Chinese Journal of Lasers, 2002, 29(3):197-200. DOI: 10.3321/j.issn:0258-7025.2002.03.002.
    [19] CELLARD C, RETRAINT D, FRANÇOIS M, et al. Laser shock peening of Ti-17 titanium alloy:Influence of process parameters[J]. Materials Science and Engineering:A, 2012, 532(1):362-372. DOI: 10.1016/j.msea.2011.10.104.
    [20] HERASYMCHUK O M, KONONUCHENKO O V, MARKOVSKY P E, et al. Calculating the fatigue life of smooth specimens of two-phase titanium alloys subject to symmetric uniaxial cyclic load of constant amplitude[J]. International Journal of Fatigue, 2016, 83:313-322. DOI: 10.1016/j.ijfatigue.2015.11.002.
  • 加载中
图(8)
计量
  • 文章访问数:  5573
  • HTML全文浏览量:  1640
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-16
  • 修回日期:  2017-07-10
  • 刊出日期:  2018-09-25

目录

    /

    返回文章
    返回