Spall of Ti17 alloy induced by laser shock peening with multiple shots
-
摘要: 为研究激光冲击Ti17合金中厚样品的层裂特性和层裂阈值,对样品(厚5 mm)表面进行单点连续1~8次激光冲击,激光工艺参数为:频率1 Hz,脉宽15 ns,激光能量30 J,方形光斑4 mm×4 mm。采用白光干涉仪、超声波无损检测技术和扫描电镜,分析和检测中厚样品冲击区域的表面形貌、内部损伤以及层裂形貌。实验结果表明,连续从4次到5次激光冲击中厚样品的表面凹坑深度增加值最大为64.5%。连续5次激光冲击为中厚样品层裂阈值,层裂面积随冲击次数增加而增加。连续5~8次激光冲击中厚样品层裂厚度的实验值为280~310 μm。层裂机理为韧性微孔洞的形核、增长和汇合,形成晶界失效和晶内失效。研究结果可为激光冲击强化整体叶盘改性提供工艺参考。
-
关键词:
- 连续多次激光冲击 /
- Ti17合金中厚样品 /
- 层裂特性 /
- 层裂阈值 /
- 超声波无损检
Abstract: In order to investigate spalling response and the spall threshold of Ti17 alloy under laser shock peening (LSP), the surface of a 5 mm-thick sample was shocked by multiple laser shots with the shot number ranging one to eight shots. The laser employed has a repetition rate of 1 Hz, the pulse width of 15 ns, the pulse energy of 30 J, and the spot size of 4 mm×4 mm. The surface morphology, the internal damage and the spall morphology after LSP were characterized by non-contact optical profiler, ultrasonic nondestructive testing technique and scanning electron microscope, respectively. The results indicate that the increment of the shot number from four to five results in increasing the depression depth of the surface up to 64.5%. The spall threshold is reached by LSP with continuous five shots. The spall thickness observed after LSP with five to eight shots ranges from 280 μm to 310 μm. The spall mechanism is due to the nucleation, growth and coalescence of the ductile micro-voids, leading to intragranular failure and transgranular failure. This work may provide valuable information for the optimization of integrated blisk rotators with LSP. -
-
[1] ZHANG Y K, LU J Z, REN X D, et al. Effect of laser shock processing on the mechanical properties and fatigue lives of the turbojet engine blades manufactured by LY2 aluminum alloy[J]. Materials and Design, 2009, 30(5):1697-1703. DOI: 10.1016/j.matdes.2008.07.017. [2] PEYRE P, FABBRO R, MERRIEN P, et al. Laser shock processing of aluminium alloys:Application to high cycle fatigue behaviour[J]. Materials Science and Engineering:A, 1996, 210(1/2):102-113. DOI: 10.1016/0921-5093(95)10084-9. [3] BERGANT Z, TRDAN U, GRUM J. Effects of laser shock processing on high cycle fatigue crack growth rate and fracture toughness of aluminium alloy 6082-T651[J]. International Journal of Fatigue, 2016, 87:444-455. DOI: 10.1016/j.ijfatigue.2016.02.027. [4] LU J Z, QI H, LUO K Y, et al. Corrosion behaviour of AISI 304 stainless steel subjected to massive laser shock peening impacts with different pulse energies[J]. Corrosion Science, 2014, 80:53-59. DOI: 10.1016/j.corsci.2013.11.003. [5] LUO K Y, WANG C Y, LI Y M, et al. Effects of laser shock peening and groove spacing on the wear behavior of non-smooth surface fabricated by laser surface texturing[J]. Applied Surface Science, 2014, 313:600-606. DOI: 10.1016/j.apsusc.2014.06.029. [6] SPANRAD S, TONG J. Characterization of foreign object damage (FOD) and early fatigue crack growth in laser shock peened Ti-6AL-4V aerofoil specimens[J]. Procedia Engineering, 2011, 528(4):2128-2136. DOI: 10.1016/j.proeng.2010.03.188. [7] 罗新民, 马辉, 张静文, 等.激光冲击中的"应变屏蔽"和"约束击穿"[J].材料导报, 2010, 24(5):11-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cldb201005003LUO Xinmin, MA Hui, ZHANG Jingwen, et al. "Strain-screening" and "constraint-breakdown" in laser shock processing[J]. Materials Review, 2010, 24(5):11-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cldb201005003 [8] LIU Q, DING K, YE L, et al. Spallation-like phenomenon induced by laser shock peening surface treatment on 7050 aluminum alloy[C]//ATRENS A, BOLAND J N. Structural integrity and fracture: Proceedings of the International Conference, SIF 2004. Brisbane, Australia: School of Mechanical and Mining Engineering Publications, 2004: 235-240. DOI: 10.1142/9789812777973_0024. [9] LIU Q, YANG C H, DING K, et al. The effect of laser power density on the fatigue life of laser-shock-peened 7050 aluminium alloy[J]. Fatigue and Fracture of Engineering Materials and Structures, 2007, 30(11):1110-1124. DOI: 10.1111/j.1460-2695.2007.01180.x. [10] JARMAKANI H, MADDOX B, WEI C T, et al. Laser shock-induced spalling and fragmentation in vanadium[J]. Acta Materialia, 2010, 58(14):4604-4628. DOI: 10.1016/j.actamat.2010.04.027. [11] LESCOUTE E, DE RESSEGUIER T, CHEVALIER J M, et al. Ejection of spalled layers from laser shock-loaded metals[J]. Journal of Applied Physics, 2010, 108(9):93510. DOI: 10.1063/1.3500317. [12] DALTON D A, BREWER J L, BERNSTEIN A C, et al. Laser-induced spallation of aluminum and Al alloys at strain rates above 2×106 s-1[J]. Journal of Applied Physics, 2008, 104(1):13526. DOI: 10.1063/1.2949276. [13] 翟少栋, 李英华, 彭建祥, 等.平面碰撞与强激光加载下金属铝的层裂行为[J].爆炸与冲击, 2016, 36(6):767-773. DOI: 10.11883/1001-1455(2016)06-0767-07.ZHAI Shaodong, LI Yinghua, PENG Jianxiang, et al. Spall behavior of pure aluminum under plate-impact and high energy laser shock loadings[J]. Explosion and Shock Waves, 2016, 36(6):767-773. DOI: 10.11883/1001-1455(2016)06-0767-07. [14] TYLER C, MILLETT J C F, BOURNE N K. Spallation in Ti-6Al-4V:Stress measurements and recovery[J]. AIP Conference Proceedings, 2006, 845(1):674-677. DOI: 10.1063/1.2263412. [15] BOIDIN X, CHEVRIER P, KLEPACZKO J R, et al. Identification of damage mechanism and validation of a fracture model based on mesoscale approach in spalling of titanium alloy[J]. International Journal of Solids and Structures, 2006, 43(14/15):4595-4615. DOI: 10.1016/j.ijsolstr.2005.06.039. [16] FABBRO R, FOURNIER J, BALLARD P, et al. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2):775-784. DOI: 10.1063/1.346783. [17] GE M Z, XIANG J Y. Effect of laser shock peening on microstructure and fatigue crack growth rate of AZ31B magnesium alloy[J]. Journal of Alloys and Compounds, 2016, 680:544-552. DOI: 10.1016/j.jallcom.2016.04.179. [18] 张建泉, 陈荣华, 强希文, 等.激光产生的激波在靶材中的传播及层裂效应[J].中国激光, 2002, 29(3):197-200. DOI: 10.3321/j.issn:0258-7025.2002.03.002.ZHANG Jianquan, CHEN Ronghua, QIANG Xiwen, et al. Propagation and spall effect of shock wave induced by laser in targets[J]. Chinese Journal of Lasers, 2002, 29(3):197-200. DOI: 10.3321/j.issn:0258-7025.2002.03.002. [19] CELLARD C, RETRAINT D, FRANÇOIS M, et al. Laser shock peening of Ti-17 titanium alloy:Influence of process parameters[J]. Materials Science and Engineering:A, 2012, 532(1):362-372. DOI: 10.1016/j.msea.2011.10.104. [20] HERASYMCHUK O M, KONONUCHENKO O V, MARKOVSKY P E, et al. Calculating the fatigue life of smooth specimens of two-phase titanium alloys subject to symmetric uniaxial cyclic load of constant amplitude[J]. International Journal of Fatigue, 2016, 83:313-322. DOI: 10.1016/j.ijfatigue.2015.11.002. -
推荐阅读
高温大理岩的动态能量耗散机理及破坏特征
张旭 等, 爆炸与冲击, 2025
典型冰雹撞击载荷作用下t800碳纤维板的损伤特性
赵浩川 等, 爆炸与冲击, 2025
高应变率载荷下纯钛的非连续冲击疲劳失效模型及其微观机理
惠煜中 等, 爆炸与冲击, 2024
Zl114a铝合金本构关系与失效准则参数的确定
谭毅 等, 爆炸与冲击, 2024
激光加热辅助铣削钛铝合金试验研究
王明海 等, 工具技术, 2025
加工参数对单晶γ-tial表面质量和亚表层损伤的影响机理
姜军强 等, 金刚石与磨料磨具工程, 2022
冲击应力和脉宽对nbtizr中熵合金层裂的影响
罗小平 等, 高压物理学报, 2024
Antimicrobial peptides towards clinical application-a long history to be concluded
Cresti, Laura et al., INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024
Effect of electrical pulse treatment on the microstructural and mechanical responses of heterogeneous linear friction welded tc17/tc4 dissimilar joint
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2025
Modes and influencing factors of electromagnetically driven high velocity formed projectile
HUANG Bingyu et al., EXPLOSION AND SHOCK WAVES, 2024