Blasting vibration evaluation and safety dose calculation based on normal distribution
-
摘要: 工程爆破是非常重要的一种施工方法,但同时爆破引起的岩石振动也是爆破公害之一。由于爆破场地的复杂性,爆破地震引起的某位置质点振速峰值v与单段最大药量Q、爆心距R没有严格的函数关系,只能将振速视为随机变量,因此振动只能从概率的角度来描述。为了控制振动强度,达到较高的可靠度,必须计算振速小于目标设施安全振速的概率。本文中基于概率,将振速峰值近似视为服从正态分布,对目标设施进行安全分析以及安全炸药量计算,最后通过案例应用,解释概率公式计算炸药量的合理性。Abstract: Blasting is an indispensable construction method to human beings. However, in the meanwhile, the rock vibration caused by blasting is one of blasting hazards. Due to the complicated geology, the peak particle velocity is a random variable approximately. It does not have a general function relationship with the maximum dose Q and the distance R from blasting center. Therefore, the vibration can only be described by the theory of probability. In order to control the vibration intensity and get high reliability, it is necessary to calculate the probability that the peak particle velocity is less than the safety vibration velocity of the target facility. Based on the probability, the distribution of peak particle velocity is approximately regarded as the normal distribution. Then safety analysis of target facilities and calculation of safe explosives are carried out. Finally, through the application of the case, it is reasonable to calculate the dose by probability formula.
-
Key words:
- blasting /
- vibration /
- peak particle velocity /
- normal distribution /
- safety dose
-
表 1 锡铁山铅锌矿爆破振动监测数据
Table 1. Blasting vibration experiment data
测点 Q/kg R/m (Q1/3·R-1)/(kg1/3·m-1) v/(cm·s-1) 1 30.2 20 0.156 11.82 2 30.2 40 0.078 3.47 3 30.2 60 0.052 1.77 4 30.2 80 0.039 1.28 5 30.2 100 0.031 0.84 6 74.8 20 0.211 17.24 7 74.8 40 0.105 5.62 8 74.8 60 0.070 2.72 9 74.8 80 0.053 1.84 10 74.8 100 0.042 1.22 表 2 数据处理结果
Table 2. Data processing results
测点 vexp/(cm·s-1) vcal/(cm·s-1) (vexp-vcal)/(cm·s-1) 1 11.82 10.92 0.90 2 3.47 3.63 -0.16 3 1.77 1.90 -0.13 4 1.28 1.21 0.07 5 0.84 0.85 -0.01 6 17.24 17.67 -0.43 7 5.62 5.87 -0.25 8 2.72 3.08 -0.36 9 1.84 1.95 -0.11 10 1.24 1.37 -0.13 表 3 单段最大药量和设施安全概率
Table 3. Single biggest dosage andfacilities security probability
方法 Q/kg P/% 萨道夫斯基公式 858.73 50.00 正态分布函数 797.89 95.05 -
[1] 饶运章, 汪弘.爆破振动速度衰减规律的多元线性回归分析[J].金属矿山, 2013(12):46-51. http://d.old.wanfangdata.com.cn/Periodical/jsks201312014RAO Yunzhang, WANG Hong. Multiple regression linear analysis on attenuation formula of blasting vibration velocity[J]. Metal Mine, 2013(12):46-51. http://d.old.wanfangdata.com.cn/Periodical/jsks201312014 [2] 胡建华, 尚俊龙, 罗先伟, 等.单孔爆破振动监测与衰减规律多元线性化回归[J].振动与冲击, 2013, 32(16):49-53. doi: 10.3969/j.issn.1000-3835.2013.16.009HU Jianhua, SHANG Junlong, LUO Xianwei, et al. Monitoring of single-hole blasting vibration and detection of its attenuation law by using multiple linear regression[J]. Journal of Vibration and Shock, 2013, 32(16):49-53. doi: 10.3969/j.issn.1000-3835.2013.16.009 [3] 卢文波, HUSTRULID W.质点峰值振动速度衰减公式的改进[J].工程爆破, 2002, 8(3):1-4. doi: 10.3969/j.issn.1006-7051.2002.03.001LU Wenbo, HUSTRULID W. An improvement to the equation for the attenuation of the peak particle velocity[J]. Engineering Blasting, 2002, 8(3):1-4. doi: 10.3969/j.issn.1006-7051.2002.03.001 [4] 言志信, 严浬, 江平, 等.爆破振动峰值预报方法探讨[J].振动与冲击, 2010, 29(5):179-182. doi: 10.3969/j.issn.1000-3835.2010.05.039YAN Zhixin, YAN Li, JIANG Ping, et al. Prediction methods for blasting induced ground vibration velocity[J]. Journal of Vibration and Shock, 2010, 29(5):179-182. doi: 10.3969/j.issn.1000-3835.2010.05.039 [5] 高振儒, 雷俊丽, 范磊, 等.爆破振动强度预报的置信度和安全系数[J].工程爆破, 2005, 11(3):69-71. doi: 10.3969/j.issn.1006-7051.2005.03.021GAO Zhenru, LEI Junli, FAN Lei, et al. Faith degree and safety coefficient of predicting blasting vibration intensity[J]. Engineering Blasting, 2005, 11(3):69-71. doi: 10.3969/j.issn.1006-7051.2005.03.021 [6] 吕涛, 石永强, 黄诚, 等.非线性回归法求解爆破振动速度衰减公式参数[J].岩土力学, 2007, 28(9):1871-1878. doi: 10.3969/j.issn.1000-7598.2007.09.019LV Tao, SHI Yongqiang, HUANG Cheng, et al. Study on attenuation parameters of blasting vibration by nonlinear regression analysis[J]. Rock and Soil Mechanics, 2007, 28(9):1871-1878. doi: 10.3969/j.issn.1000-7598.2007.09.019 [7] 贾晓强, 方向, 张卫平, 等.基于置信度理论的岩石爆破振动安全控制研究[J].爆破器材, 2011, 40(3):31-34. doi: 10.3969/j.issn.1001-8352.2011.03.009JIA Xiaoqiang, FANG Xiang, ZHANG Weiping, et al. Analysis on security control of rock blasting vibration based on faith degree theory[J]. Explosive Materials, 2011, 40(3):31-34. doi: 10.3969/j.issn.1001-8352.2011.03.009 [8] 李庆扬, 王能超, 易大义.数值分析[M].北京:清华大学出版社, 2001. [9] 王国政, 刘洋, 肖继红, 等.概率论与数理统计[M].重庆:重庆大学出版社, 2015. [10] NATEGHI R. Prediction of ground vibration level induced by blasting at different rock units[J]. International Journal of Rock Mechanics and Mining Science, 2011, 48(6):899-908. doi: 10.1016/j.ijrmms.2011.04.014 [11] 陈钧璠.爆破振动公式中K值上下限的探讨[J].爆破, 1996, 13(2):13-15. doi: 10.3969/j.issn.1001-8352.2011.03.009CHEN Junfan. Determination of lower and upper limits of K in equation of blasting vibration[J]. Blasting, 1996, 13(2):13-15. doi: 10.3969/j.issn.1001-8352.2011.03.009