Experimental study of bubble pulsation by underwater explosion of CL-20-based explosives
-
摘要: 为研究CL-20基炸药、CL-20基含铝炸药水下爆炸气泡脉动情况,在2 m×2 m×2 m的实验水箱中开展小当量实验,采用高速摄影技术,得到炸药水中爆炸冲击波传播曲线,同时清晰地观测到气泡的产生、膨胀和收缩过程。拟合得到气泡脉动过程中气泡半径、速度、加速度对时间的变化曲线,对比分析了CL-20含铝与非含铝炸药水下爆炸气泡脉动规律。在实验条件下,首次直观地拍摄到CL-20含铝炸药水下爆炸的二次反应放热现象。实验表明:CL-20基含铝炸药的气泡半径、脉动周期都明显升高,半径增大13.7%,周期增大6.9%;冲击波峰值压力略有下降;水下爆炸测试技术以及高速摄影技术是研究观测含铝炸药二次反应的有效手段。Abstract: In this study, we investigated the effect of underwater explosion of CL-20-based explosive and CL-20-based aluminized explosive, by examining the dynamics of the bubble pulses generated by CL-20-based explosives charge underwater explosions in a 2 m×2 m×2 m water tank, with the pressure history of the shock wave measured. The process of the generation, expansion and contraction of the air bubble was observed clearly using the high-speed photo technology. The variation of the bubble radius, its expanding and contracting velocities, and its expanding and contracting accelerations with time was achieved in the bubble pulse process under the given experimental conditions. The bubble pulsation of the CL-20-based explosive and CL-20-based aluminized explosive were analyzed and compared. For the first time, secondary reaction process of the aluminum for the CL-20-based aluminized explosive underwater explosion was captured by the high-speed photo technology under the experimental conditions. The results show that the bubble radius and bubble periods of CL-20-based aluminized explosive went through an obvious increase, the bubble radius going up by 13.7% and the bubble period by 6.9%, respectively. The peak pressure of the shock wave exhibited a slight decrease. The technology of underwater explosion test and high-speed photography can be used to study the secondary reaction of aluminized explosive effectively.
-
Key words:
- bubble impulsion /
- high speed photography /
- CL-20 /
- aluminized explosive /
- secondary reactions
-
表 1 实验药柱参数
Table 1. Parameters of explosive grain
工况 炸药公式 炸药尺寸/(mm×mm) 密度/(g·cm-3) 1 CL-20/Estane/G/W Ø15×14.68 1.929 2 95/3.5/0.5/1 Ø15×14.68 1.929 3 CL-20/Al/Estane/G/W Ø15×14.21 1.993 4 80/15/3.5/0.5/1 Ø15×14.20 1.994 表 2 实验药柱参数
Table 2. Parameters of explosive grain
工况 脉动周期/ms 气泡半径/cm 压力峰值/MPa 1 46.75 60.6 15.52 2 46.76 59.9 15.49 3 49.97 68.1 15.20 4 50.43 67.6 15.12 -
[1] 王昕, 彭翠枝.国外六硝基六氮杂异伍兹烷的发展现状[J].火炸药学报, 2007, 30(5):45-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hzyxb200705012WANG Xin, PENG Cuizhi. Development of hexanitrohexaazaisowurtaitane at abroad[J]. Chinese Journal Explosives & Propellant, 2007, 30(5):45-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hzyxb200705012 [2] 宋振伟, 李笑江.高能量密度化合物HNIW的最新研究进展及其应用前景[J].化学推进剂与高分子材料, 2011, 9(1):40-45. http://www.cqvip.com/QK/94025A/201101/36529460.htmlSONG Zhenwei, LI Xiaojiang. Recent research progress and application prospect of high energy density compound HNIW[J]. Chemical Propellants & Polymeric Materials, 2011, 9(1):40-45. http://www.cqvip.com/QK/94025A/201101/36529460.html [3] 周正青, 聂建新, 覃剑锋, 等.铝氧比对含铝炸药性能影响的数值模拟[J].爆炸与冲击, 2015, 35(4):513-519. doi: 10.11883/1001-1455(2015)04-0513-07ZHOU Zhengqing, NIE Jianxin, QIN Jianfeng, et al. Numerical simulations on effects of Al/O ratio on performance of aluminized explosives[J]. Explosion and Shock Waves, 2015, 35(4):513-519. doi: 10.11883/1001-1455(2015)04-0513-07 [4] 裴红波, 聂建新, 覃剑峰.基于非平衡多相模型的含铝炸药爆速研究[J].爆炸与冲击, 2013, 33(3):311-315. doi: 10.11883/1001-1455(2013)03-0311-04PEI Hongbo, NIE Jianxin, QIN Jianfeng. Investigation on detonation velocity of aluminized explosives based on disequilibrium multiphase model[J]. Explosion and Shock Waves, 2013, 33(3):311-315. doi: 10.11883/1001-1455(2013)03-0311-04 [5] 周正青, 聂建新, 郭学永, 等.一种以RDX为基含铝炸药状态方程的研究[J].兵工学报, 2014, 35(2):338-342. http://mall.cnki.net/magazine/magadetail/BIGO2014S2.htmZHOU Zhengqing, NIE Jianxin, GUO Xueyong, et al. Studies on equation of state of detonation product for RDX-based aluminized explosive[J]. Acta Armamentarii, 2014, 35(2):338-342. http://mall.cnki.net/magazine/magadetail/BIGO2014S2.htm [6] 胡宏伟, 严家佳, 陈朗, 等.铝粉含量和粒度对CL-20含铝炸药水中爆炸反应特性的影响[J].爆炸与冲击, 2017, 37(1):157-161. doi: 10.11883/1001-1455(2017)01-0157-05HU Hongwei, YAN Jiajia, CHEN Lang, et al. Effect of aluminum powder content and its particle size on reaction characteristics for underwater explosion of CL-20-based explosives containing aluminum[J]. Explosion and Shock Waves, 2017, 37(1):157-161. doi: 10.11883/1001-1455(2017)01-0157-05 [7] 李健, 荣吉利, 杨荣杰, 等.水中爆炸冲击波传播与气泡脉动的实验及数值模拟[J].兵工学报, 2008, 29(12):1437-1443. doi: 10.3321/j.issn:1000-1093.2008.12.006LI Jian, RONG Jili, YANG Rongjie, et al. Experiment and numerical simulation of shock wave propagation and bubble impulse of underwater explosion[J]. Acta Armamentarii, 2008, 29(12):1437-1443. doi: 10.3321/j.issn:1000-1093.2008.12.006 [8] LI Yujie, PAN Jianqiang, LI Guohua, et al. Experimental study of ship whipping induced by underwater explosive bubble[J]. Journal of Ship Mechanics, 2001, 5(6):78-83. http://en.cnki.com.cn/Article_en/CJFDTotal-CBLX200106008.htm [9] 汪斌, 张远平, 王彦平.水中爆炸气泡脉动现象的实验研究[J].爆炸与冲击, 2008, 28(6):572-576. doi: 10.11883/1001-1455(2008)06-0572-05WANG Bin, ZHANG Yuanping, WANG Yanping. Experimental study on bubble oscillation formed during underwater explosions[J]. Explosion and Shock Waves, 2008, 28(6):572-576. doi: 10.11883/1001-1455(2008)06-0572-05 [10] 汪斌, 张远平, 王彦平.一种水中爆炸气泡脉动实验研究方法[J].高压物理学报, 2009, 23(5):332-337. doi: 10.11858/gywlxb.2009.05.003WANG Bin, ZHANG Yuanping, WANG Yanping. An experimental method of studying underwater explosion bubble oscillation[J]. Chinese Journal of High Pressure Physics, 2009, 23(5):332-337. doi: 10.11858/gywlxb.2009.05.003 [11] 王树山, 李梅, 马峰.爆炸气泡与自由水面相互作用动力学研究[J].物理学报, 2014, 63(19):231-240. http://www.cnki.com.cn/Article/CJFDTotal-WLXB201419033.htmWANG Shushan, LI Mei, MA Feng. Dynamics of the interaction between explosion bubble and free surface[J]. Acta Physica Sinica, 2014, 63(19):231-240. http://www.cnki.com.cn/Article/CJFDTotal-WLXB201419033.htm [12] 马坤, 初哲, 王可慧, 等.小当量炸药深水爆炸气泡脉动模拟实验[J].爆炸与冲击, 2015, 35(3):320-325. doi: 10.11883/1001-1455-(2015)03-0320-06MA Kun, CHU Zhe, WANG Kehui, et al. Experimental research on bubble pulse of small scale charge exploded under simulated deep water[J]. Explosion and Shock Waves, 2015, 35(3):320-325. doi: 10.11883/1001-1455-(2015)03-0320-06 [13] 张颖, 周刚. 小当量水下爆炸试验研究[C]//第七届全国爆轰学术会议论文集. 北京: 北京理工大学, 2006: 222-227. [14] 汪斌, 张光升, 高宁, 等.高速摄影技术在水下爆炸气泡脉动研究中纳应用[J].含能材料, 2010, 18(1):102-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hncl201001025WANG Bin, ZHANG Gangsheng, Gao Ning, et al. The application of high-speed photography in the study of underwater explosion bubble pulsation[J]. Chinese Journal of Energetic Materials, 2010, 18(1):102-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hncl201001025 [15] COOK M A, FILLER A S, KEYES R T, et al. Aluminized explosives[J]. The Journal of Physical Chemistry, 1957, 61(2):189-196. doi: 10.1021/j150548a013 [16] 赵生伟, 周刚, 王占江, 等.小当量水中爆炸气泡的脉动现象[J].爆炸与冲击, 2009, 29(2):213-216. doi: 10.11883/1001-1455(2009)02-0213-04ZHAO Shengwei, ZHOU Gang, WANG Zhanjiang, et al. Bubble pulses of small-scale underwater explosion[J]. Explosion and Shock Waves, 2009, 29(2):213-216. doi: 10.11883/1001-1455(2009)02-0213-04