Explosion characteristics of micro-sized aluminum dust in 20 L spherical vessel
-
摘要: 采用20 L近球形粉尘爆炸实验系统,探究微米级铝粉在不同点火延迟时间、粉尘粒径及粉尘浓度下的爆炸特性规律。结果表明:当点火延迟时间在20~120 ms范围内,铝粉最大爆炸压力和最大爆炸压力上升速率先增大后减小,随铝粉粒径增大,最佳点火延迟时间增大;在任一点火延迟时间下,粒径大于8.12 μm的铝粉最大爆炸压力随粉尘粒径的减小呈增大的变化趋势;粒径大于8.12 μm的铝粉,在80~440 g/m3粉尘浓度范围内,铝粉最大爆炸压力和最大爆炸压力上升速率先增大后减小,且铝粉粒径越小,对应的最猛烈爆炸粉尘浓度越低。Abstract: In order to investigate explosion characteristics of micro-sized aluminum dust, a series of experiments were carried out to reveal the influences of ignition delay time, dust particle size and dust concentration on explosion parameters of aluminum dust using a 20 L nearly spherical dust explosion experimental system. The results show that:when the ignition delay time was within 20-120 ms, the maximum explosion pressure and maximum rate of pressure rise of aluminum dust initially increased but then decreased, the optimum ignition delay time increased with increasing particle size. The maximum explosion pressure of aluminum dust with particle size greater than 8.12 μm increased with decreasing particle size. Moreover, when the particle size is greater than 8.12 μm and the dust concentration range is 80-440 g/m3, the maximum explosion pressure and pressure rise rate of aluminum dust increased at beginning and then decreased, in addition, the smaller the dust particle size, the lower the dust concentration corresponding to the most violent explosion.
-
表 1 不同粒径和不同点火延迟时间下铝粉爆炸特性参数
Table 1. Explosion characteristic parameters of aluminum dustunder different particle sizes and different ignition delay times
d/μm τ/ms pmax/MPa (dp/dt)max/(MPa·s-1) 8.12 20 0.272 41.505 8.12 30 0.292 221.599 8.12 40 0.271 173.190 8.12 60 0.263 65.909 8.12 80 0.259 62.776 8.12 100 0.243 34.348 8.63 20 0.258 40.513 8.63 40 0.313 48.676 8.63 60 0.311 78.554 8.63 80 0.252 69.444 8.63 100 0.247 38.574 10.98 20 0.228 23.622 10.98 40 0.252 36.393 10.98 60 0.288 48.402 10.98 80 0.237 37.568 10.98 100 0.236 35.568 17.98 20 0.092 7.656 17.98 40 0.116 12.894 17.98 60 0.186 20.412 17.98 80 0.228 27.482 17.98 100 0.316 50.340 17.98 120 0.168 22.660 表 2 不同粉尘浓度下铝粉爆炸特性参数
Table 2. Explosion characteristic parameters of aluminum dust under different dust concentrations
d/μm τ/ms ρ/(g·m-3) pmax/MPa (dp/dt)max/(MPa·s-1) 8.12 30 60 0.181 53.529 8.12 30 80 0.292 221.599 8.12 30 120 0.346 120.130 8.12 30 160 0.358 110.658 8.12 30 220 0.343 85.847 8.12 30 280 0.300 71.626 8.12 30 360 0.298 62.837 8.63 40 80 0.313 48.676 8.63 40 120 0.390 50.904 8.63 40 160 0.377 104.524 8.63 40 220 0.375 75.044 8.63 40 280 0.357 48.920 8.63 40 360 0.329 44.923 8.63 40 440 0.298 40.472 10.98 60 80 0.288 48.402 10.98 60 120 0.290 74.342 10.98 60 160 0.355 104.891 10.98 60 220 0.354 88.289 10.98 60 280 0.290 33.147 10.98 60 360 0.219 34.150 10.98 60 440 0.207 22.583 17.98 100 80 0.316 50.340 17.98 100 120 0.334 70.238 17.98 100 160 0.338 60.415 17.98 100 220 0.404 60.243 17.98 100 280 0.350 54.210 17.98 100 360 0.327 38.616 17.98 100 440 0.271 26.856 -
[1] 李延鸿.粉尘爆炸的基本特征[J].科技情报开发与经济, 2005, 15(14):130-131. doi: 10.3969/j.issn.1005-6033.2005.14.075LI Yanhong. Basic characteristics of dust explosion[J]. Sci-Tech Information Development with Economy, 2005, 15(14):130-131. doi: 10.3969/j.issn.1005-6033.2005.14.075 [2] 赵江平, 王振成.热爆炸理论在粉尘爆炸机理研究中的应用[J].中国安全科学学报, 2004, 14(5):80-84. doi: 10.3969/j.issn.1003-3033.2004.05.020ZHAO Jiangping, WANG Zhencheng. Application of thermal explosion theory in the study of dust explosion mechanism[J]. China Safety Science Journal, 2004, 14(5):80-84. doi: 10.3969/j.issn.1003-3033.2004.05.020 [3] KWON Y S, GROMOV A A, ILYIN A P, et al. The mechanism of combustion of superfine aluminum powders[J]. Combustion and Flame, 2003, 133(4):385-391. doi: 10.1016/S0010-2180(03)00024-5 [4] GROMOV A, VERESHCHAGIN V. Study of aluminum nitride formation combustion by superfine aluminum powder combustion in air[J]. Journal of the European Ceramic Soeiety, 2004, 24(9):287-288. http://www.sciencedirect.com/science/article/pii/S0955221903007775 [5] 谭汝媚, 张奇, 张博.点火延迟时间对铝粉爆炸特性参数的影响[J].爆炸与冲击, 2014, 34(1):17-22. doi: 10.3969/j.issn.1001-1455.2014.01.004TAN Rumei, ZHANG Qi, ZHANG Bo. Effects of ignition delay time on characteristic parameters of aluminum dust explosion[J]. Explosion and Shock Waves, 2014, 34(1):17-22. doi: 10.3969/j.issn.1001-1455.2014.01.004 [6] 袁旌杰, 伍毅, 陈瑜, 等.点火延迟时间对粉尘最大爆炸压力测定影响的研究[J].中国安全科学学报, 2010, 20(3):65-69. doi: 10.3969/j.issn.1003-3033.2010.03.012YUAN Jinjie, WU Yi, CHEN Yu, et al. Effect of ignition delay time on measurement of maximum explosion pressure of dusts[J]. China Safety Science Journal, 2010, 20(3):65-69. doi: 10.3969/j.issn.1003-3033.2010.03.012 [7] 尉存娟, 谭迎新, 路旭, 等.点火延迟时间对铝粉爆炸压力的影响研究[J].中北大学学报, 2009, 30(3):257-260. doi: 10.3969/j.issn.1673-3193.2009.03.013YU Cunjuan, TAN Yingxin, LU Xu, et al. Effect of the ignition delay time on the explosion pressure of aluminum dust[J]. Journal of North University of China, 2009, 30(3):257-260. doi: 10.3969/j.issn.1673-3193.2009.03.013 [8] 李庆钊, 王可, 梅晓凝, 等.微米级铝粉的爆炸特性及其反应机理研究[J].工程热物理学报, 2017, 38(1):119-225. http://qikan.cqvip.com/article/detail.aspx?id=671023951LI Qingzhao, WANG Ke, MEI Xiaoning, et al. Investigation on explosion characteristics and reaction mechanism of micro-aluminum powder[J]. Journal of Engineering Thermophysics, 2017, 38(1):119-225. http://qikan.cqvip.com/article/detail.aspx?id=671023951 [9] VIGNES A, MUNOZ F. Explosion characteristics of micronand nano-size aluminum powers[J]. Process Safety and Environmental Protection, 2014, 27(2):55-64. [10] CASTELLANOS D, CARRETO-VAZQUEZ V H, MASHUGA C V, et al. The effect of particle size polydispersity on the explosibility characteristics of aluminum dust[J]. Powder Technology, 2014, 254(3):331-337. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0232265347 [11] 任瑞娥, 谭迎新.浓度对铝粉爆炸特性的影响研究[J].消防理论研究, 2014, 33(4):375-376. http://d.old.wanfangdata.com.cn/Periodical/xfkxyjs201404005REN Rui'e, TAN Yingxin. Study on the effect of concentration on explosion characteristics of aluminum powder[J]. Fire Theory Research, 2014, 33(4):375-376. http://d.old.wanfangdata.com.cn/Periodical/xfkxyjs201404005 [12] LIN B Q, LI W X, ZHU C J, et al. Experimental investigation on explosion characteristics of nano-aluminum powder-air mixtures[J]. Combustion, Explosion and Shock Waves, 2010, 46(6):678-682. doi: 10.1007/s10573-010-0089-2 [13] CASHDOLLAR K L, ZLOCHWER I A. Explosion characteristics of nano-aluminum powder-air mixtures in 20 L spherical vessels[J]. Journal of Loss Prevention in the Process Industries, 2007, 20(4/5/6):337-348. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0222478467 [14] 陈玲.铝粉爆炸特性的实验研究和数值模拟[D].辽宁大连: 大连理工大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10141-1011108637.htm [15] SARLI V D, RUSSO P, SANCHIRCO R, et al. CFD simulations of dust dispersion in the 20 L vessel:Effect of nominal dust concentration[J]. Journal of Loss Prevention in the Process Industries, 2014, 27(1):8-12. http://www.sciencedirect.com/science/article/pii/S0950423013002076 [16] KALEJAIYE O, AMYOTTE P R, PEGG M J, et al. Effectiveness of dust dispersion in the 20 L Siwek chamber[J]. Journal of Loss Prevention in the Process Industries, 2010, 23(1):46-59. doi: 10.1016/j.jlp.2009.05.008