Ti-6Al-4V在高应变率下的动态剪切特性及失效机理

张炜琪 许泽建 孙中岳 仝毅 黄风雷

张炜琪, 许泽建, 孙中岳, 仝毅, 黄风雷. Ti-6Al-4V在高应变率下的动态剪切特性及失效机理[J]. 爆炸与冲击, 2018, 38(5): 1137-1144. doi: 10.11883/bzycj-2017-0107
引用本文: 张炜琪, 许泽建, 孙中岳, 仝毅, 黄风雷. Ti-6Al-4V在高应变率下的动态剪切特性及失效机理[J]. 爆炸与冲击, 2018, 38(5): 1137-1144. doi: 10.11883/bzycj-2017-0107
ZHANG Weiqi, XU Zejian, SUN Zhongyue, TONG Yi, HUANG Fenglei. Dynamic shear behavior and failure mechanism of Ti-6Al-4V at high strain rates[J]. Explosion And Shock Waves, 2018, 38(5): 1137-1144. doi: 10.11883/bzycj-2017-0107
Citation: ZHANG Weiqi, XU Zejian, SUN Zhongyue, TONG Yi, HUANG Fenglei. Dynamic shear behavior and failure mechanism of Ti-6Al-4V at high strain rates[J]. Explosion And Shock Waves, 2018, 38(5): 1137-1144. doi: 10.11883/bzycj-2017-0107

Ti-6Al-4V在高应变率下的动态剪切特性及失效机理

doi: 10.11883/bzycj-2017-0107
基金项目: 

国家自然科学基金项目 11772062

国家自然科学基金项目 11302030

爆炸科学与技术国家重点实验室自主研究项目 YBKT17-03

详细信息
    作者简介:

    张炜琪(1991-), 女, 硕士研究生

    通讯作者:

    许泽建, xuzejian@bit.edu.cn

  • 中图分类号: O346.1

Dynamic shear behavior and failure mechanism of Ti-6Al-4V at high strain rates

  • 摘要: 采用基于霍普金森压杆的新型加载技术对Ti-6Al-4V材料的动态剪切特性及失效机理进行了测试研究。获得了Ti-6Al-4V材料在超过104 s-1应变率下的剪应力-剪应变曲线及失效参数。研究发现,材料的流动应力存在明显的应变率强化效应;随着应变率的增加,材料的失效应力逐渐增大,而失效应变逐渐减小。采用ABAQUS/Explicit对加载过程进行了数值模拟。结果显示,剪切区材料基本处于平面剪切状态,应力应变场分布较为均匀,计算得到的剪应力-剪应变曲线与实验结果吻合较好。经断口分析可知,随着应变率的升高,Ti-6Al-4V的失效机理存在由韧窝、拉伸韧窝至台阶及河流花样的演化过程,材料的失效模式主要表现为韧性断裂。
  • 图  1  试样结构示意图

    Figure  1.  Schematic diagram of sample

    图  2  典型实验波形图

    Figure  2.  Typical stress waves measured in Hopkinson bars

    图  3  Ti-6Al-4V在不同应变率下的剪应力-剪应变曲线

    Figure  3.  Shear stress-shear strain curves ofTi-6Al-4V at different strain rates

    图  4  Ti-6Al-4V在不同应变率下的失效应变

    Figure  4.  Failure strains of Ti-6Al-4Vat different shear strain rates

    图  5  Ti-6Al-4V在不同应变率下的失效应力

    Figure  5.  Failure stresses of Ti-6Al-4Vat different shear strain rates

    图  6  模型装配图

    Figure  6.  Model assembly drawing

    图  7  入射、反射和透射应变信号的实验和模拟结果比较

    Figure  7.  Comparison of incident, reflected and transmittedstrain waves between experimental and simulated results

    图  8  试样剪切区的应力、应变分量

    Figure  8.  Stress/strain components in whole shear zone

    图  9  应力-应变曲线的实验与数值模拟结果对比

    Figure  9.  Comparison of stress-strain curvesbetween experimental and simulation results

    图  10  Ti-6Al-4V剪切断口形貌

    Figure  10.  Fractography of Ti-6Al-4V

    图  11  Ti-6Al-4V剪切断口形貌

    Figure  11.  Fractography of Ti-6Al-4V

    图  12  Fractography of Ti-6Al-4V

    Figure  12.  SEM microstructure of Ti-6Al-4V fracture surfaces

    表  1  数值模拟的主要材料参数

    Table  1.   Material parameters in FE simulation

    部位 材料 ρ/(g·cm-3) E/GPa ν λ/(W·m-1·K-1)
    入射杆 18Ni钢 8.0 190 0.3 -
    试样 Ti-6Al-4V 4.43 114 0.33 6.7
    透射杆 7075铝合金 2.7 70 0.3 -
    下载: 导出CSV
  • [1] BAI Y, DODD B. Adiabatic shear localization: Occurrence, theories and applications[J]. Oxford University Press, 1992.
    [2] LIAO S C, DUFFY J. Adiabatic shear bands in a Ti-6Al-4V titanium alloy[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(11):2201-2231. doi: 10.1016/S0022-5096(98)00044-1
    [3] RITTEL D, WANG Z G. Thermo-mechanical aspects of adiabatic shear failure of AM50 and Ti-6Al-4V alloys[J]. Mechanics of Materials, 2008, 40(8):629-635. doi: 10.1016/j.mechmat.2008.03.002
    [4] PEIRS J, VERLEYSEN P, DEGRIECK J, et al. The use of hat-shaped specimens to study the high strain rate shear behaviour of Ti-6Al-4V[J]. International Journal of Impact Engineering, 2010, 37(6):703-714. doi: 10.1016/j.ijimpeng.2009.08.002
    [5] CHICHILI D R, RAMESH K T, HEMKER K J. Adiabatic shear localization in α-titanium:Experiments, modeling and microstructural evolution[J]. Journal of the Mechanics and Physics of Solids, 2004, 52(8):1889-1909. doi: 10.1016/j.jmps.2004.02.013
    [6] RITTEL D, LEE S, RAVICHANDRAN G. A shear-compression specimen for large strain testing[J]. Experimental Mechanics, 2002, 42(1):58-64. doi: 10.1007/BF02411052
    [7] DOROGOY A, RITTEL D, GODINGER A. A shear-tension specimen for large strain testing[J]. Experimental Mechanics, 2016, 56(3):437-449. doi: 10.1007/s11340-015-0106-1
    [8] 林艺生, 傅学金, 杨月诚.30CrMnSiA绝热剪切带显微观察与分析[J].兵器材料科学与工程, 2010, 33(6):59-61. doi: 10.3969/j.issn.1004-244X.2010.06.018

    LIN Yisheng, FU Xuejin, YANG Yuecheng. Microstructure observation and analysis of adiabatic shear band in 30CrMnSiA steel[J]. Ordnance Material Science and Engineering, 2010, 33(6):59-61. doi: 10.3969/j.issn.1004-244X.2010.06.018
    [9] MEYERS M A, CHEN Y J, MARQUIS F D S, et al. High-strain, high-strain-rate behavior of tantalum[J]. Metallurgical and Materials Transactions:A, 1995, 26(10):2493-2501. doi: 10.1007/BF02669407
    [10] 魏志刚, 李永池, 李剑荣, 等.冲击载荷作用下钨合金材料绝热剪切带形成机理[J].金属学报, 2000, 36(12):1263-1268. doi: 10.3321/j.issn:0412-1961.2000.12.008

    WEI Zhigang, LI Yongchi, LI Jianrong, et al. Formation mechanism of adiabatic shear band in tungsten heavy alloys[J]. Acta Metallurgica Sinica, 2000, 36(12):1263-1268. doi: 10.3321/j.issn:0412-1961.2000.12.008
    [11] ROGERS H C, SHASTRY C V. Shock waves and high-strain-rate phenomena in metals[M]. Plenum Press, 1981:683.
    [12] FERGUSON W G, HAUSER F E, DORN J E. Dislocation damping in zinc single crystals[J]. British Journal of Applied Physics, 1967, 18(18):411-417. http://adsabs.harvard.edu/abs/1967BJAP...18..411F
    [13] 刘新芹, 谭成文, 张静, 等.应力状态对Ti-6Al-4V绝热剪切敏感性的影响[J].稀有金属材料与工程, 2008, 37(9):1522-1525. doi: 10.3321/j.issn:1002-185X.2008.09.004

    LIU Xinqin, TAN Chengwen, ZHANG Jing, et al. Influence of stress-state on adiabatic shear sensitivity of Ti-6Al-4V[J]. Rare Metal Materials and Engineering, 2008, 37(9):1522-1525. doi: 10.3321/j.issn:1002-185X.2008.09.004
    [14] ZHANG Jing, TAN Chengwen, REN Yu, et al. Adiabatic shear fracture in Ti-6Al-4V alloy[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(11):2396-2401. doi: 10.1016/S1003-6326(11)61026-1
    [15] 苏冠龙, 龚煦, 李玉龙, 等.TC4在动态载荷下的剪切行为研究[J].爆炸与冲击, 2015, 35(4):527-535. http://www.bzycj.cn/CN/abstract/abstract9496.shtml

    SU Guanlong, GONG Xu, LI Yulong, et al. Shear behavior of TC4 alloy under dynamic loading[J]. Explosion and Shock Waves, 2015, 35(4):527-535. http://www.bzycj.cn/CN/abstract/abstract9496.shtml
    [16] LANDAU P, VENKERT A, RITTEL D. Microstructural aspects of adiabatic shear failure in annealed Ti6AL4V[J]. Metallurgical and Materials Transactions:A, 2010, 41(2):389-396. doi: 10.1007/s11661-009-0098-5
    [17] GUO Yazhou, LI Yulong. A novel approach to testing the dynamic shear response of Ti-6Al-4V[J]. Acta Mechanica Solida Sinica, 2012, 25(3):299-311. doi: 10.1016/S0894-9166(12)60027-5
    [18] LONGÈRE P, DRAGON A. Dynamic vs. quasi-static shear failure of high strength metallic alloys:Experimental issues[J]. Mechanics of Materials, 2015, 80:203-218. doi: 10.1016/j.mechmat.2014.05.001
    [19] 许泽建, 丁晓燕, 张炜琪, 等.一种用于材料高应变率剪切性能测试的新型加载技术[J].力学学报, 2016, 48(3):654-659. http://d.old.wanfangdata.com.cn/Periodical/lxxb201603015

    XU Zejian, DING Xiaoyan, ZHANG Weiqi, et al. A new loading technique for measuring shearing properties of materials under high strain rates[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3):654-659. http://d.old.wanfangdata.com.cn/Periodical/lxxb201603015
    [20] XU Zejian, DING Xiaoyan, ZHANG Weiqi, et al. A novel method in dynamic shear testing of bulk materials using the traditional SHPB technique[J]. International Journal of Impact Engineering, 2017, 101:90-104. doi: 10.1016/j.ijimpeng.2016.11.012
    [21] NEMAT-NASSER S. Hopkinson techniques for dynamic recovery experiments[J]. Proceedings of the Royal Society:A, 1991, 435:371-391. doi: 10.1098/rspa.1991.0150
    [22] SEO S, MIN O, YANG H. Constitutive equation for Ti-6Al-4V at high temperatures measured using the SHPB technique[J]. International Journal of Impact Engineering, 2005, 31(6):735-754. doi: 10.1016/j.ijimpeng.2004.04.010
    [23] 钟群鹏, 赵子华.断口学[M].北京:高等教育出版社, 2006.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  5789
  • HTML全文浏览量:  1533
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-01
  • 修回日期:  2017-09-11
  • 刊出日期:  2018-09-25

目录

    /

    返回文章
    返回