障碍物对丙烷-空气爆炸火焰加速的影响

周宁 王文秀 张国文 宗永迪 赵会军 袁雄军

周宁, 王文秀, 张国文, 宗永迪, 赵会军, 袁雄军. 障碍物对丙烷-空气爆炸火焰加速的影响[J]. 爆炸与冲击, 2018, 38(5): 1106-1114. doi: 10.11883/bzycj-2017-0109
引用本文: 周宁, 王文秀, 张国文, 宗永迪, 赵会军, 袁雄军. 障碍物对丙烷-空气爆炸火焰加速的影响[J]. 爆炸与冲击, 2018, 38(5): 1106-1114. doi: 10.11883/bzycj-2017-0109
ZHOU Ning, WAND Wenxiu, ZHANG Guowen, Zong Yongdi, ZHAO Huijun, YUAN Xiongjun. Effect of obstacles on flame acceleration of propane-air explosion[J]. Explosion And Shock Waves, 2018, 38(5): 1106-1114. doi: 10.11883/bzycj-2017-0109
Citation: ZHOU Ning, WAND Wenxiu, ZHANG Guowen, Zong Yongdi, ZHAO Huijun, YUAN Xiongjun. Effect of obstacles on flame acceleration of propane-air explosion[J]. Explosion And Shock Waves, 2018, 38(5): 1106-1114. doi: 10.11883/bzycj-2017-0109

障碍物对丙烷-空气爆炸火焰加速的影响

doi: 10.11883/bzycj-2017-0109
基金项目: 

国家自然科学基金青年科学基金项目 51204026

国家重点研发计划重点专项项目 2017YFC0805100

国家重点研发计划重点专项项目 2017YFC0806600

公安部技术研究计划项目 2016JSYJD04

建筑消防工程技术公安部重点实验室开放课题 KFKT2015ZD03

详细信息
    作者简介:

    周宁(1977-), 男, 博士, 副教授, zhouning@cczu.edu.cn

  • 中图分类号: O357.5;TE88

Effect of obstacles on flame acceleration of propane-air explosion

  • 摘要: 研究了障碍物阻塞率、障碍物间距、障碍物空间位置对丙烷-空气爆炸过程及火焰加速效应的影响。采用雷诺平均(RANS)方程和湍流火焰封闭燃烧模型计算非稳态燃烧过程,主要分析障碍物周围复杂流场特性以及湍流涡与火焰面作用的详细机理。结果表明:阻塞率在0.5~0.7时,障碍物间距对火焰加速效果的影响较大,其中障碍物间距为一倍管径时火焰加速效应最大;而障碍物的空间位置对火焰传播的影响更为显著,当障碍物位于管道单侧时,湍流涡强度最大,火焰褶皱最明显,火焰传播速度最快。
  • 图  1  实验系统

    Figure  1.  Schematic illustration of experimental setup

    图  2  火焰速度的实验值与计算值的对比

    Figure  2.  Comparison of experimentaland calculated flame velocities

    图  3  爆炸压力的实验值与计算值的对比

    Figure  3.  Comparison of experimentaland calculated pressures

    图  4  障碍物空间位置-管道截面图

    Figure  4.  Schematic diagram of cross section of pipeline and obstacles spatial positions

    图  5  不同障碍物间距下的火焰平均加速度

    Figure  5.  Average flame accelerationunder different obstacles spacing

    图  6  阻塞率为0.5时障碍物空间位置对火焰传播的影响

    Figure  6.  Influence of obstacles spatial position on flame propagation when blocking rate is 0.5

    图  7  管道轴线上火焰速度分布图

    Figure  7.  Distribution of flame velocity on axis of pipeline

    图  8  火焰到达各测点的时间

    Figure  8.  Times at which flame reaches monitor points

    图  9  障碍物不同间距下火焰翻越障碍物时的流场

    Figure  9.  Flow field when flame crosses obstacles at different obstacle spacings

    图  10  火焰翻越不同空间位置障碍物时的流场

    Figure  10.  Vector velocity field when flame crosses over obstacles at different spatial positions

    表  1  湍流模型的计算结果与实验结果的对比

    Table  1.   Comparison between calculated results of turbulence models and experimental results

    方法 pm/MPa δpm/% vm/(m·s-1) δvm/%
    实验 0.508 - 194.8 -
    可实现k-ε 0.565 0 11.22 182.75 6.59
    RNG k-ε 0.412 7 23.09 145.00 34.3
    SST k-ω 0.363 7 39.68 150.40 29.52
    下载: 导出CSV
  • [1] CHAPMAN W R, WHEELER R V. Ⅵ.-The propagation of flame in mixtures of methane and air. Part Ⅴ. The movement of the medium in which the flame travels[J]. Journal of the Chemical Society (Resumed), 1927:38-46.
    [2] DOBASHI R. Experimental study on gas explosion behavior in enclosure[J]. Journal of Loss Prevention in the Progress Industries, 1997, 10(2):83-89. doi: 10.1016/S0950-4230(96)00050-2
    [3] MASRI A R, IBRAHIM S S, NEHZAT N, et al. Experimental study of premixed flame propagation over various solid obstructions[J]. Experimental Thermal and Fluid Science, 2000, 21(1):109-116. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ027474262
    [4] IBRAHIM S S, MASRI A R. The effects of obstructions on overpressure resulting from premixed flame deflagration[J]. Journal of Loss Prevention in the Process Industries, 2001, 14(3):213-221. doi: 10.1016/S0950-4230(00)00024-3
    [5] CICCARELLI G, FOWLER C J, BARDON M. Effect of obstacle size and spacing on the initial stage of flame acceleration in a rough tube[J]. Shock Waves, 2005, 14(3):161-166. doi: 10.1007/s00193-005-0259-4
    [6] CATLIN C A, FAIRWEATHER M, IBRAⅡM S S. Predictions of turbulent, premixed flame propagation in explosion tubes[J]. Combustion and Flame, 1995, 102(1):115-128. doi: 10.1016-0010-2180(94)00245-N/
    [7] DUNN-RANKIN D, MCCANN M A. Overpressures from nondetonating, baffle-accelerated turbulent flames in tubes[J]. Combustion and Flame, 2000, 120(4):504-514. doi: 10.1016/S0010-2180(99)00109-1
    [8] NAAMANSEN P, BARALDI D, HJERTAGER B H, et al. Solution adaptive CFD simulation of premixed flame propagation over various solid obstructions[J]. Journal of Loss Prevention in the Process Industries, 2002, 15(3):189-197. doi: 10.1016/S0950-4230(02)00006-2
    [9] GAMEZO V N, OGAWA T, ORAN E S. Numerical simulations of flame propagation and DDT in obstructed channels filled with hydrogen-air mixture[J]. Proceedings of the Combustion Institute, 2007, 31(2):2463-2471. doi: 10.1016/j.proci.2006.07.220
    [10] SARLI V D, BENEDETTO A D, RUSSO G. Sub-grid scale combustion models for large eddy simulation of unsteady premixed flame propagation around obstacles[J]. Journal of Hazardous Materials, 2010, 180(1):71-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0222649677
    [11] JOHANSEN C, CICCARELLI G. Modeling the initial flame acceleration in an obstructed channel using large eddy simulation[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(4):571-585. doi: 10.1016/j.jlp.2012.12.005
    [12] 孙明波, 汪洪波, 梁剑寒.复杂湍流流动的混合RANS/LES方法研究[J].航空计算技术, 2011, 41(1):24-28. doi: 10.3969/j.issn.1671-654X.2011.01.006

    SUN Mingbo, WANG Hongbo, LIANG Jianhan. Evaluation of hybrid RANS/LES method for complex turbulent flow simulations[J]. Aeronautical Computing Technique, 2011, 41(1):24-28. doi: 10.3969/j.issn.1671-654X.2011.01.006
    [13] ZIMONT V L, BATTAGLIA V. Joint RANS/LES approach to premixed flame modeling in the context of the TFC combustion model[J]. Flow, Turbulence and Combustion, 2006, 77(1):305-331. http://www.sciencedirect.com/science/article/pii/B978008044544150087X
    [14] 陈鹏, 李艳超, 黄福军, 等.方孔障碍物对瓦斯火焰传播影响的实验与大涡模拟[J].爆炸与冲击, 2017, 37(1):21-26. http://www.bzycj.cn/CN/abstract/abstract9681.shtml

    CHEN Peng, LI Yanchao, HUANG Fujun, et al. LES approach to premixed methane/air flame propagation in the closed duct with a square-hole obstacle[J]. Explosion and Shock Waves, 2017, 37(1):21-26. http://www.bzycj.cn/CN/abstract/abstract9681.shtml
    [15] SHEN Xiaobo, HE Xuechao, SUN Jinhua. A comparative study on premixed hydrogen-air and propane-air flame propagations with tulip distortion in a closed duct[J]. Fuel, 2015, 161:248-253. doi: 10.1016/j.fuel.2015.08.043
    [16] LV Xianshu, ZHENG Ligang, ZHANG Yugui. Combined effects of obstacle position and equivalence ratio on overpressure of premixed hydrogen-air explosion[J]. International Journal of Hydrogen Energy, 2016, 41(39):17740-17749. doi: 10.1016/j.ijhydene.2016.07.263
    [17] 王公忠, 张建华, 李登科, 等.障碍物对预混火焰特性影响的大涡数值模拟[J].爆炸与冲击, 2017, 37(1):68-76. http://www.bzycj.cn/CN/abstract/abstract9687.shtml

    WANG Gongzhong, ZHANG Jianhua, LI Dengke, et al. Large eddy simulation of impacted obstacle's effects on premixed flame's characteristics[J]. Explosion and Shock Waves, 2017, 37(1):68-76. http://www.bzycj.cn/CN/abstract/abstract9687.shtml
    [18] 张欣, 王涛, 侯效森, 等.低热值气体发动机涡团与火焰面相互作用[J].内燃机学报, 2016, 34(6):537-542. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=NRJX201606009&dbname=CJFD&dbcode=CJFQ

    ZHANG Xin, WANG Tao, HOU Xiaosen, et al. Flame-vortex interaction of lower heating value gases fueled engine[J]. Transaction of CSICE, 2016, 34(6):537-542. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=NRJX201606009&dbname=CJFD&dbcode=CJFQ
    [19] JOHANSEN C, CICCARELLI G. Modeling the initial flame acceleration in an obstructed channel using large eddy simulation[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(4):571-585. doi: 10.1016/j.jlp.2012.12.005
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  5326
  • HTML全文浏览量:  1549
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-05
  • 修回日期:  2017-06-27
  • 刊出日期:  2018-09-25

目录

    /

    返回文章
    返回