Numerical simulation on anti-penetration and penetration depth model of mesoscale concrete target
-
摘要: 为研究细观混凝土靶的侵彻规律,采用LS-DYNA软件对刚性弹丸侵彻两相混凝土靶进行了数值模拟。结果表明,影响靶板抗侵彻能力的主要因素是砂浆种类、粗骨料种类和粗骨料体积分数;混凝土靶中的砂浆与对应的砂浆靶中的砂浆产生的阻力接近;混凝土靶中的粗骨料产生的阻力远低于对应的岩石靶中的岩石。通过扩展Forrestal阻力方程,建立了细观混凝土侵彻深度模型,模型和数值模拟一致性很好。Abstract: In order to study the penetration law of the mesoscale concrete target, The LS-DYNA software is used to simulate the penetration of rigid projectiles into two-phase concrete target. The results show that the main factors affecting the penetration resistance of the target are mortar type, coarse aggregate type and coarse aggregate volume fraction. The resistance of mortar in concrete target is close to the same part of mortar in mortar target. The resistance of coarse aggregate in concrete target is much lower than the same part of rock in rock target. By extending the Forrestal resistance equation, the penetration depth model of mesoscale concrete is established, which is in good agreement with the numerical simulation.
-
Key words:
- penetration /
- mesoscale /
- concrete /
- LS-DYNA /
- penetration depth
-
表 1 Salem石灰岩HJC本构参数
Table 1. HJC model parameters of Salem limestone
ρ0/(g·cm-3) G/GPa A B C N f′c/MPa T/MPa $ {\dot \varepsilon _0} $/s-1 Ef, min 2.3 10 0.55 1.23 0.009 7 0.89 60 4 1 0.01 Smax Pcrush/MPa μcrush Plock/GPa μlock D1 D2 K1/GPa K2/GPa K3/GPa 20 20 0.001 25 2 0.174 0.04 1.0 39 -223 550 表 2 S型砂浆HJC本构参数
Table 2. HJC model parameters of type S mortar
ρ0/(g·cm-3) G/MPa A B C N f′c/MPa T/MPa $ {\dot \varepsilon _0} $/s-1 Ef, min 1.604 1 150 0.66 1.335 0.001 8 0.845 12.3 1.8 1 0.01 Smax Pcrush/MPa μcrush Plock/MPa μlock D1 D2 K1/MPa K2/GPa K3/GPa 80.24 13.8 0.007 5 109.6 0.15 0.006 629 1.0 300 -2 19 表 3 侵彻数值模拟方案及侵彻深度P
Table 3. Numerical simulation scheme and penetration depth P
方案 v0/
(m·s-1)粗骨料形状 da/mm 粗骨料级配 粗骨料方向 φ/% 附加说明 P/cm 1 500 球体 ∅25 Fuller连续级配 - 33 - 73.9 2 500 球体 ∅40 Fuller连续级配 - 33 - 74.6 3 500 球体 ∅60 Fuller连续级配 - 33 撞击位置1
(轴线)73.5 4 500 球体 ∅60 Fuller连续级配 - 33 撞击位置2
(横向偏移2 cm)73.3 5 500 球体 ∅60 Fuller连续级配 - 33 撞击位置3
(横向偏移-2 cm)73.7 6 500 长方体 30×30×10 3种粗骨料尺寸 最短边与弹轴平行 33 - 69.2 7 500 长方体 30×30×10 3种粗骨料尺寸 最短边与弹轴垂直 33 - 75.8 8 500 长方体 30×20×10 3种粗骨料尺寸 最短边与弹轴平行 33 - 70.8 9 500 长方体 30×20×10 3种粗骨料尺寸 最短边与弹轴垂直 33 - 75.7 10 500 长方体 30×10×10 3种粗骨料尺寸 最短边与弹轴平行 33 - 69.9 11 500 长方体 30×10×10 3种粗骨料尺寸 最短边与弹轴垂直 33 - 75.8 12 500 球体 ∅40 Fuller连续级配 - 20 - 85.0 13 500 球体 ∅40 粗骨料尺寸相同 - 20 - 88.3 14 500 球体 ∅40 Fuller连续级配 - 50 - 66.1 15 500 - - - - 100 靶板为岩石 27.0 16 500 - - - - 0 靶板为砂浆 97.6 17 800 球体 ∅40 Fuller连续级配 - 33 - 153.3 18 300 球体 ∅40 Fuller连续级配 - 33 - 33.8 -
[1] LI Q M, REID S R, WEN H M, et al. Local impact effects of hard missiles on concrete targets[J]. International Journal of Impact Engineering, 2005, 32(1):224-284. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ025583222 [2] 程怡豪, 王明洋, 施存程, 等.大范围着速下混凝土靶抗冲击试验研究综述[J].浙江大学学报(工学版), 2015(4):616-625. http://d.old.wanfangdata.com.cn/Periodical/zjdxxb-gx201504002CHENG Yihao, WANG Mingyang, SHI Cuncheng, et al. Review of experimental investigation of concrete target to resist missile impact in large velocity range[J]. Journal of Zhejiang University(Engineering Science), 2015(4):616-625. http://d.old.wanfangdata.com.cn/Periodical/zjdxxb-gx201504002 [3] FORRESTAL M J, TZOU D Y. A spherical cavity-expansion penetration model for concrete targets[J]. International Journal of Solids and Structures, 1997, 34(31):4127-4146. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0226220945/ [4] 水利水电科学研究院结构材料研究所.大体积混凝土[M].北京:水利电力出版社, 1990:76-79. [5] DANCYGIER A N, YANKELEVSKY D Z, JAEGERMANN C. Response of high performance concrete plates to impact of non-deforming projectiles[J]. International Journal of Impact Engineering, 2007, 34(11):1768-1779. doi: 10.1016/j.ijimpeng.2006.09.094 [6] WANG S, LE H T N, POH L H, et al. Resistance of high-performance fiber-reinforced cement composites against high-velocity projectile impact[J]. International Journal of Impact Engineering, 2016, 95:89-104. doi: 10.1016/j.ijimpeng.2016.04.013 [7] 张伟, 慕忠成, 肖新科.骨料粒径对混凝土靶抗高速破片侵彻影响的实验研究[J].兵工学报, 2012, 33(8):1009-1015. http://d.old.wanfangdata.com.cn/Periodical/bgxb201208019ZHANG Wei, MU Zhongcheng, XIAO Xinke. Experimental study on effect of aggregate size to anti-penetration ability of concrete targets subjected to high-velocity fragments[J]. Acta Armamentarii, 2012, 33(8):1009-1015. http://d.old.wanfangdata.com.cn/Periodical/bgxb201208019 [8] 张凤国, 刘军, 梁龙河, 等.数值建模时骨料对混凝土侵彻及毁伤问题的影响[J].爆炸与冲击, 2013, 33(2):217-220. doi: 10.3969/j.issn.1001-1455.2013.02.017ZHANG Fengguo, LIU jun, LIANG Longhe, et al. Influence of aggregate on penetration process of concrete target when numerical modeling[J]. Explosion and Shock Waves, 2013, 33(2):217-220. doi: 10.3969/j.issn.1001-1455.2013.02.017 [9] FANG Q, ZHANG J. 3D numerical modeling of projectile penetration into rock-rubble overlays accounting for random distribution of rock-rubble[J]. International Journal of Impact Engineering, 2014, 63(1):118-128. https://www.sciencedirect.com/science/article/pii/S0734743X13001656 [10] 张兆军, 王晓鸣, 李文彬.粗骨料种类对刚性弹贯穿混凝土靶剩余速度的影响[J].振动与冲击, 2014, 33(7):170-173. http://d.old.wanfangdata.com.cn/Periodical/zdycj201407029ZHANG Zhaojun, WANG Xiaoming, LI Wenbin. Effect of coarse aggregate type on residual velocity of rigid-projectiles-perforating concrete targets[J]. Journal of Vibration and Shock, 2014, 33(7):170-173. http://d.old.wanfangdata.com.cn/Periodical/zdycj201407029 [11] HOLQMUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rate, and high pressures[C]//Proceedings of 14th International Symposium on Ballistics. Quebec, Canada, 1993: 591-600. [12] 方秦, 孔祥振, 吴昊, 等.岩石Holmquist-Johnson-Cook模型参数的确定方法[J].工程力学, 2014, 31(3):197-204. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201403028.htmFANG Qin, KONG Xiangzhen, WU Hao, et al. Determination of Holmquist-Johnson-Cookconsitiutive model parameters of rock[J]. Engineering Mechanics, 2014, 31(3):197-204. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201403028.htm [13] MEYER C S. Development of geomaterial parameters for numerical simulations using the Holmquist-Johnson-Cook constitutive model for concrete: ARL-TR-5556[R]. Army Research Laboratory Aberdeen Proving Ground md Weapons and Materials Research Directorate, 2011. [14] FORRESTAL M J, FREW D J, HICKERSON J P, et al. Penetration of concrete targets with deceleration-time measurements[J]. International Journal of Impact Engineering, 2003, 28(5):479-497. doi: 10.1016/S0734-743X(02)00108-2 [15] 徐飞.普通混凝土骨料最小空隙率的探讨[J].混凝土, 2004(3):17-18. doi: 10.3969/j.issn.1002-3550.2004.03.006XU Fei. The research of minimal fraction void of concrete aggregate[J]. Concrete, 2004(3):17-18. doi: 10.3969/j.issn.1002-3550.2004.03.006