Impact resistance of H shaped beam with various width-to-thickness ratios
-
摘要: 基于经实验校核的非线性有限元模型,对受横向冲击作用的H形钢梁进行了有限元分析。设计不同宽厚比组配的H形钢梁,分析H形钢梁跨中受横向冲击的动态响应和应力发展过程,并研究宽厚比对H形钢梁抗冲击性能的影响,重点讨论了腹板厚度、翼缘厚度对冲击力平台值和峰值以及耗能的影响。分析结果表明,两端铰接H形钢梁在跨中受冲击载荷作用下的变形模式主要为弯曲变形。相同冲击能量下,冲击力平台值主要受翼缘厚度的影响,冲击力峰值主要受腹板厚度的影响。翼缘厚度对钢梁抗冲击性能的影响要大于腹板厚度。本研究可为不同宽厚比H形钢梁的抗冲击设计提供依据和参考。Abstract: Based on a verified finite element model, numerical model of H beams subjected to lateral impact was established by ABAQUS. The accuracy of finite element models was validated against existing experimental results. The failure process of H beams and the influences of width-to-thickness ratios on the dynamic behaviors of H beams were systematically investigated. Then, the effects of flange thickness and web thickness on the stable impact forces, peak impact forces and energy dissipation were accurately analyzed. The results show that the failure mode of both side pin-ended steel beam subjected to transverse impact was global bending failure. Under certain impact energy the stable impact forces were mainly affected by the flange thickness and the peak impact forces. Furthermore, the effect of flange thickness on the dynamic behaviors of H beams was more obvious than the effect of the web thickness. In addition, the results of numerical analysis provided a basis and reference for the design of resisting impact of H beams.
-
Key words:
- H beams /
- impact resistance /
- width-to-thickness ratios /
- energy dissipation
-
表 1 实验与模拟主要数据对比
Table 1. Comparision between numerical and experimental data
试件编号 冲击力峰值Fmax/kN 冲击力平台值Fstable/kN 跨中最大位移dmax/mm 实验 模拟 实验/模拟 实验 模拟 实验/模拟 实验 模拟 实验/模拟 HR43 812.3 833.2 0.975 240.6 232.3 1.037 59.6 61.8 0.964 HR56 815.2 839.5 0.971 249.3 243.7 1.023 121.3 123.1 0.985 表 2 模拟工况
Table 2. Schedule of numerical tests
组别 模拟编号 有效长度L/mm 腹板厚度tw/mm 翼缘厚度tf/mm 腹板宽厚比rf 翼缘宽厚比rw H59 2 500 5 9 6.94 50.0 H69 2 500 6 9 6.94 41.7 1 H79 2 500 7 9 6.94 35.7 H89 2 500 8 9 6.94 31.3 H99 2 500 9 9 6.94 27.7 H56 2 500 5 6 10.4 50.0 H58 2 500 5 8 7.81 50.0 2 H510 2 500 5 10 6.25 50.0 H512 2 500 5 12 5.20 50.0 H514 2 500 5 14 4.46 50.0 试件的命名方法:H代表H形钢梁,试件编号第1个数字代表腹板厚度,后面的数字代表翼缘厚度。 -
[1] 高海建, 奚铁, 孙飞飞, 等.热轧H型钢的轧制及其工程应用[J].建筑钢结构进展, 2002, 4(1):33-40. doi: 10.3969/j.issn.1671-9379.2002.01.006GAO Haijian, XI Tie, SUN Feifei, et al. The fabrication and application of hot rolled H-shaped steel[J]. Progress in Steel Building Structures, 2002, 4(1):33-40. doi: 10.3969/j.issn.1671-9379.2002.01.006 [2] 陈以一, 童乐为, 岳昌智, 等.高频焊接H型钢在多层住宅轻钢结构体系中的应用研究[J].住宅科技, 2004(4):28-32. http://d.old.wanfangdata.com.cn/Periodical/zhuzkj200404010CHEN Yiyi, TONG Lewei, YUE Changzhi, et al. Research on application of high frequency welding H-section steel in light steel structure system of multi-storied building[J]. Housing Science, 2004(4):28-32. http://d.old.wanfangdata.com.cn/Periodical/zhuzkj200404010 [3] NASSR A A, RAZAQPUR A G, TAIT M J, et al. Dynamic response of steel columns subjected to blast loading[J]. Journal of Structural Engineering, 2014, 140(7):165-180. http://d.old.wanfangdata.com.cn/Periodical/bpqc201804005 [4] FERRER B, IVORRA S, SEGOVIA E, et al. Tridimensional modelization of the impact of a vehicle against a metallic parking column at a low speed[J]. Engineering Structures, 2010, 32(8):1986-1992. doi: 10.1016/j.engstruct.2010.02.032 [5] 霍静思, 张晋清, 陈柏生, 等.冲击荷载作用下热轧H型钢梁力学性能试验研究[J].建筑结构学报, 2011, 32(12):242-249. http://d.old.wanfangdata.com.cn/Periodical/jzjgxb201112028HUO Jingsi, ZHANG Jinqing, CHEN Baisheng, et al. Dynamic behaviors of hot-rolled steel beams under drop weight impact loading[J]. Journal of Building Structures, 2011, 32(12):242-249. http://d.old.wanfangdata.com.cn/Periodical/jzjgxb201112028 [6] 崔娟玲, 郭昭胜, 王蕊, 等.热轧H型钢柱侧向冲击试验研究[J].振动与冲击, 2014, 33(18):133-139. http://d.old.wanfangdata.com.cn/Periodical/zdycj201418022CUI Juanling, GUO Zhaosheng, WANG Rui, et al. Tests for behavior of a hot rolled H-shaped steel column under lateral impact[J]. Journal of Vibration and Shock, 2014, 33(18):133-139. http://d.old.wanfangdata.com.cn/Periodical/zdycj201418022 [7] Al-THAIRY H, WANG Y C. A numerical study of the behaviour and failure modes of axially compressed steel columns subjected to transverse impact[J]. International Journal of Impact Engineering, 2011, 38(8/9):732-744. https://www.sciencedirect.com/science/article/pii/S0734743X11000583 [8] WANG H, YANG B, ZHOU X H, et al. Numerical analyses on steel beams with fin-plate connections subjected to impact loads[J]. Journal of Constructional Steel Research, 2016, 124:101-112. doi: 10.1016/j.jcsr.2016.05.016 [9] MAKAREM F S, ABED F. Nonlinear finite element modeling of dynamic localizations in high strength steel columns under impact[J]. International Journal of Impact Engineering, 2013, 52(52):47-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0229142201 [10] VOYIADJIS G Z, ABED F H. Microstructural based models for bcc and fcc metals with temperature and strain rate dependency[J]. Mechanics of Materials, 2005, 37(2):355-378. https://www.sciencedirect.com/science/article/pii/S0167663604000894 [11] Al-THAIRY H, WANG Y C. A simplified analytical method for predicting the critical velocity of transverse rigid body impact on steel columns[J]. International Journal of Impact Engineering, 2013, 58:39-54. doi: 10.1016/j.ijimpeng.2013.02.004 [12] BAMBACH M R, JAMA H, ZHAO X L, et al. Hollow and concrete filled steel hollow sections under transverse impact loads[J]. Engineering Structures, 2008, 30(10):2859-2870. doi: 10.1016/j.engstruct.2008.04.003 [13] JONES N, SHEN W Q. A theoretical study of the lateral impact of fully clamped pipelines[J]. Journal of Process Mechanical Engineering, 1992, 2(206):129-146. doi: 10.1243/PIME_PROC_1992_206_208_02 [14] HING Ho T, LAM N T K. Collapse of reinforced concrete column by vehicle impact[J]. Computer-Aided Civil and Infrastructure Engineering, 2008, 23(6):427-436. doi: 10.1111/mice.2008.23.issue-6 [15] Eurocode 1. Actions on structures-Part 1-7: General actions-Accidental actions: 1991-1-7: 2006[S]. 2006. [16] CHENG X, CHEN Y, NETHERCOT D A. Experimental study on H-shaped steel beam-columns with large width-thickness ratios under cyclic bending about weak-axis[J]. Engineering Structures, 2013, 49(2):264-274. https://www.researchgate.net/publication/256968829_Experimental_study_on_H-shaped_steel_beam-columns_with_large_width-thickness_ratios_under_cyclic_bending_about_weak-axis [17] 陈以一, 马越, 赵静, 等.薄柔高频焊接H钢柱的实验和抗震承载力评价[J].同济大学学报(自然科学版), 2006, 34(11):1421-1426. doi: 10.3321/j.issn:0253-374X.2006.11.001CHEN Yiyi, MA Yue, ZHAO Jing, et al. Tests on high-frequency welded H steel columns with slendes elements and its evaluation of seismic resistance[J]. Journal of TongJi University (Natural Science), 2006, 34(11):1421-1426. doi: 10.3321/j.issn:0253-374X.2006.11.001 [18] JNOES N. Structural impact[M]. 2nd ed. Cambridge:Cambridge University Press, 1997:340-342. [19] 程欣, 陈以一.考虑板件相关作用的H形截面压弯钢构件抗弯承载力[J].工程力学, 2015, 32(3):41-49. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=GCLX201503007&dbname=CJFD&dbcode=CJFQCHENG Xin, CHEN Yiyi. Moment resistance of H-section steel beam-columns considering the interactive effect of plate elements[J]. Engineering Mechnics, 2015, 32(3):41-49. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=GCLX201503007&dbname=CJFD&dbcode=CJFQ