Estimation of underwater explosive energy for different charge warhead shells
-
摘要: 通过对裸炸药和带壳战斗部在无限水域中水下爆炸的实验研究,对比分析了炸药的冲击波峰值压力、比冲击波能、比气泡能、总比能量及相对比总能量等爆炸特性参数。结果表明:不同装药爆炸后峰值压力从大到小分别是热塑梯黑铝、熔梯黑铝、复合PBX、TNT,其他对比参数从大到小分别是复合PBX、熔梯黑铝、热塑梯黑铝、TNT;带壳战斗部爆炸后比冲击波能、比气泡能、总比能量相对裸炸药均有不同程度的下降,其中总比能量分别比裸炸药减少25%、21%、15%和15%;战斗部壳体对水中兵器爆炸的比冲击波能、比气泡能及总比能量的影响较为显著。因此,研究水中兵器爆炸威力必须考虑战斗部壳体因素,不能简化。研究成果对于战斗部水下爆炸威力考核有一定的借鉴意义。Abstract: With the experimental study of underwater explosion for confined and unconfined in free field water, the characteristic parameters of explosion, such as the peak pressure of shock wave, the specific shock wave energy, the specific bubble energy, the total specific energy and the relative total energy of the explosives were compared and analyzed. The results showed that the peak pressure are, different for thermoplastic TNT-RDX-Al explosive, fusing TNT-RDX-Al explosive, composite PBX and TNT, Other parameters are, composite PBX, thermoplastic TNT-RDX-Al explosive, fusing TNT-RDX-Al explosive, TNT, The specific shock wave energy, the specific bubble energy, the total specific energy of warhead with shell decreased compared to warhead without shell. The total specific energy decreased 25%, 21%, 15% and 15%. It is obvious that shell is important for underwater explosion effects. Therefore, the influence of shell must be considered and can't be simplified for energy effects of underwater weapons.
-
Key words:
- underwater explosion /
- warhead /
- shell /
- explosive energy
-
表 1 炸药性能参数
Table 1. Detonation parameters of explosives
炸药 装药密度/(g·cm-3) 爆速/(m·s-1) 爆热/(kJ·kg-1) 药包质量/kg 复合PBX 1.82 5 500 8 210 3.0 熔梯黑铝 1.84 7 200 7 400 3.0 热塑梯黑铝 1.70 7 500 5 750 3.0 TNT 1.50 6 900 3 530 3.0 表 2 爆炸实验工况
Table 2. Explosion experiment cases
炸药 裸炸药实验(药包重3.0 kg) 带壳战斗部实验(装药200 kg)) TNT当量 入水深度/m 炸点距离/m 冲击因子 TNT当量 入水深度/m 炸点距离/m 冲击因子 复合PBX 6.00 10 3~12 0.20~0.82 260 25 16~40 0.40~1.01 熔梯黑铝 5.52 10 3~12 0.20~0.78 320 25 16~40 0.45~1.12 热塑梯黑铝 4.80 10 3~12 0.18~0.73 320 25 16~40 0.45~1.12 TNT 3.00 10 3~12 0.14~0.58 200 25 16~40 0.35~0.88 表 3 4种炸药的平均比冲击波能、平均比气泡能、总比能量及相对比总能量
Table 3. Energy comparison of four kinds of explosives
炸药 比冲击波能/(MJ·kg-1) 比气泡能/(MJ·kg-1) 总比能量/(MJ·kg-1) 相对比总能量 复合PBX 1.484 4.568 6.052 2.029 熔梯黑铝 1.462 4.322 5.784 1.939 热塑梯黑铝 1.330 3.173 4.503 1.509 TNT 0.965 2.018 2.983 1.000 表 4 4种战斗部的平均比冲击波能、平均比气泡能、总比能量及相对比总能量
Table 4. Energy comparison of four kinds of warheads
战斗部 比冲击波能/(MJ·kg-1) 比气泡能/(MJ·kg-1) 总比能量/(MJ·kg-1) 相对比总能量 复合PBX 1.03 3.53 4.56 1.80 熔梯黑铝 1.21 3.35 4.56 1.80 热塑梯黑铝 1.07 2.76 3.83 1.51 TNT 0.82 1.72 2.54 1.00 -
[1] 项大林, 荣吉利, 李健, 等.金属壳体装药水下爆炸的冲击波特性[J].爆炸与冲击, 2012, 32(1):67-72. doi: 10.3969/j.issn.1001-1455.2012.01.012XIANG Dalin, RONG Jili, LI Jian, et al. Shock wave features of underwater explosion of explosives with metal shell[J]. Explosion and Shock Waves, 2012, 32(1):67-72. doi: 10.3969/j.issn.1001-1455.2012.01.012 [2] 盛振新, 刘荣忠, 郭锐.壳体厚度和爆炸深度对水下爆炸冲击波的影响[J].火炸药学报, 2011, 34(3):45-47. doi: 10.3969/j.issn.1007-7812.2011.03.012SHENG Zhenxin, LIU Rongzhong, GUO Rui. Effect of shell thickness and explosion depth on underwater explosive shock wave[J]. Chinese Journal of Explosives & Propellants, 2011, 34(3):45-47. doi: 10.3969/j.issn.1007-7812.2011.03.012 [3] 梁斌, 卢永刚, 杨世全, 等.不同壳体装药爆炸威力的数值模拟及试验研究[J].火炸药学报, 2008, 31(1):6-11. doi: 10.3969/j.issn.1007-7812.2008.01.002LIANG Bin, LU Yonggang, YANG Shiquan, et al. Numerical simulation and experiment investigation of blast effect of explosive charge with different shell materials[J]. Chinese Journal of Explosives & Propellants, 2008, 31(1):6-11. doi: 10.3969/j.issn.1007-7812.2008.01.002 [4] 张奇, 覃彬, 孙庆云, 等.战斗部壳体厚度对爆炸空气冲击波的影响[J].弹道学报, 2008, 20(2):17-19. http://d.old.wanfangdata.com.cn/Periodical/ddxb200802005ZHANG Qi, QIN Bin, SUN Qingyun, et al. Influence of thickness of warhead shell upon explosive shock wave[J]. Journal of Ballistics, 2008, 20(2):17-19. http://d.old.wanfangdata.com.cn/Periodical/ddxb200802005 [5] 师华强, 宗智, 贾敬蓓.水下爆炸冲击波的近场特性[J].爆炸与冲击, 2009, 29(2):125-130. doi: 10.3321/j.issn:1001-1455.2009.02.003SHI Huaqiang, ZONG Zhi, Jia Jingbei. Short-range characters of underwater blast waves[J]. Explosion and Shock Waves, 2009, 29(2):125-130. doi: 10.3321/j.issn:1001-1455.2009.02.003 [6] TAKASHI K, MURATA K, TORⅡ A, et al. Enhancement of underwater shock wave by metal confinement[C]//Proceedings of 12th International Detonation Symposium. San Diego, 2002: 466-474. [7] JONES D A, NORTHEAST E D. Effects of case thickness on the performance of underwatermines: ADA293941[R]. 1995. [8] 程素秋, 樊宝顺, 薛飞, 等.水下非接触爆炸作用下舱段模型的动态响应[J].爆炸与冲击, 2008, 28(4):360-366. doi: 10.3321/j.issn:1001-1455.2008.04.013CHENG Suqiu, FAN Baoshun, XUE Fei, et al. Measure of dynamic responses of a cabin model subjected to noncontact underwater explosions[J]. Explosion and Shock Waves, 2008, 28(4):360-366. doi: 10.3321/j.issn:1001-1455.2008.04.013 [9] 程素秋, 王永亮, 刘旭, 等.远场非接触爆炸作用下舱段模型动态响应的数值模拟[J].船舶工程, 2009, 31(1):60-63. doi: 10.3969/j.issn.1000-6982.2009.01.016CHENG Suqiu, WANG Yongliang, LIU Xu, et al. Dynamic responses simulation of a cabin model subjected to far field noncontact underwater explosions[J]. Ship Engineering, 2009, 31(1):60-63. doi: 10.3969/j.issn.1000-6982.2009.01.016 [10] 孙华, 郭志军.PBX炸药技术特性及在水中兵器上的应用[J].装备学院学报, 2009, 20(3):108-111. doi: 10.3783/j.issn.1673-0127.2009.03.025SUN Hua, GUO Zhijun. Characteristics of PBX dynamite and its application in undersea weaponry[J]. Journal of Equipment Academy, 2009, 20(3):108-111. doi: 10.3783/j.issn.1673-0127.2009.03.025 -