Dynamic response of existing large oil storage tank under blasting excavation vibration
-
摘要: 针对既有大型储油罐近区基础爆破开挖中的安全问题,采用ANSYS/LS-DYNA的隐式-显式顺序求解方法,结合流固耦合算法,研究了爆破振动下大型储油罐的动力响应规律。分析了罐壁不同位置的质点振速,由于质点振速分布情况较为复杂,不宜用局部质点振速判断罐壁危险点;总结了罐壁上应力的分布规律,结果显示爆破振动对储油罐的影响主要集中在迎爆侧下部,且在罐壁迎爆侧高度为3 m左右的位置最易发生象足屈曲;分析了不同频率爆破振动作用下满载储罐罐壁的质点振速,结果表明在爆破振动主频范围内,载荷频率远大于储罐固有频率条件下,罐壁上质点振速随着爆破振动频率的降低呈减小趋势;建立了储油罐罐壁质点振速与罐内液面高度的关系,结果表明降低液面高度可以有效提高储油罐的爆破振动安全阈值,爆破施工中邻近储罐储液高度不宜高于10 m。Abstract: Aiming at the safety problem of existing large oil tank under near base blasting excavation, the dynamic response of large oil tank is analyzed by numerical simulation method, based on the implicit-to-explicit sequential solution procedure and the fluid solid coupling algorithm of ANSYS/LS-DYNA. different positions are obtained, by which it is not appropriate to determine the dangerous point of the tank wall because the distributions of the particle vibration velocities are very complex. The dynamic stress distribution on the tank wall is summarized, and the results show that the influence of blasting vibration on the oil tank is mainly concentrated on the lower part of the explosion side, and that the elephant foot buckling deformation is most likely produced at the height of 3 meters on the detonation side of tank wall; The particle vibration velocity of the tank wall under different frequency of blasting vibration is analyzed. The results show that in the main frequency range of blasting vibration, the particle vibration velocity on the tank wall decreases with the decrease of blasting vibration frequency if the load frequency is much larger than the natural frequency of the tank; The relationship between the particle vibration velocity and the liquid level in the tank is established, and the results show that lowering the height of liquid level can effectively improve the safety threshold of blasting vibration of the oil tank, and the storage liquid height of adjacent storage tanks should not be higher than 10 m for blasting operations.
-
Key words:
- implicit-to-explicit /
- fluid solid coupling /
- blasting /
- large oil storage tank /
- dynamic response
-
表 1 罐壁详细参数
Table 1. Detailed parameters of tank wall
层数 壁厚/mm 层高/mm 材料 1 32.0 2 420 SPV490Q 2 27.0 2 420 SPV490Q 3 21.5 2 420 SPV490Q 4 18.5 2 420 SPV490Q 5 15.0 2 420 SPV490Q 6 12.0 2 420 SPV490Q 7 12.0 2 420 SPV490Q 8 12.0 2 380 Q-235A.F 9 12.0 2 380 Q-235A.F 表 2 材料基本参数
Table 2. Basic parameters of the materials
材料 E/GPa μ ρ/(kg·m-3) ν/(MPa·s) G/GPa Et/GPa σs/MPa 罐体 210.00 0.30 7 850 - - 22.06 490 基础 - 0.25 2 700 - 15.40 - - 液体 2.18 - 1 000 1.13 - - - 空气 0 - 1.20 - - - - 表 3 储油罐前20阶模态
Table 3. The first 20 modes of storage tank
阶 频率/Hz 流固耦合模态
(本文)空罐模态 本文 文献[9] 1 0.357 27 1.151 6 1.153 7 2 0.357 32 1.151 6 1.153 7 3 0.358 18 1.159 3 1.161 9 4 0.358 18 1.159 3 1.161 9 5 0.363 38 1.164 1 1.165 4 6 0.363 38 1.164 1 1.165 4 7 0.365 83 1.190 1 1.192 8 8 0.365 89 1.190 1 1.192 8 9 0.376 52 1.194 2 1.194 2 10 0.376 57 1.194 2 1.194 2 11 0.380 07 1.239 3 1.237 3 12 0.380 07 1.239 3 1.237 3 13 0.396 89 1.246 5 1.249 4 14 0.396 89 1.246 5 1.249 4 15 0.400 39 1.297 3 1.292 3 16 0.400 46 1.297 3 1.292 3 17 0.424 61 1.331 4 1.334 5 18 0.424 65 1.331 4 1.334 5 19 0.426 53 1.366 2 1.356 6 20 0.426 53 1.366 2 1.356 6 -
[1] 陈志平, 沈建民, 葛颂, 等.基于组合圆柱壳理论的大型油罐应力分析[J].浙江大学学报(工学版), 2006, 40(9):1633-1637. doi: 10.3785/j.issn.1008-973X.2006.09.035CHEN Zhiping, SHEN Jianmin, GE Song, et al. Stress analysis of large oil storage tanks based on combined cylindrical shell[J]. Journal of Zhejiang University (Engineering Science), 2006, 40(9):1633-1637. doi: 10.3785/j.issn.1008-973X.2006.09.035 [2] 张云峰, 袁朝庆, 孙建刚.储罐三维地震响应分析[J].东北石油大学学报, 2003, 27(2):71-74. doi: 10.3969/j.issn.2095-4107.2003.02.023ZHANG Yunfeng, YUAN Zhaoqing, SUN Jiangang. Seismic response analysis of three-dimension tank[J]. Journal of Northeast Petroleum University, 2003, 27(2):71-74. doi: 10.3969/j.issn.2095-4107.2003.02.023 [3] 孙建刚, 王振, 杨宇, 等.模型储罐三维地震反应振动台试验研究[J].地震工程与工程振动, 2008, 28(5):122-132. http://d.old.wanfangdata.com.cn/Periodical/dzgcygczd200805017SUN Jiangang, WANG Zhen, YANG Yu, et al. Finite element analysis of 3D seismic response of unanchored liquid storage tanks[J]. Earthquake Engineering and Engineering Vibration, 2008, 28(5):122-132. http://d.old.wanfangdata.com.cn/Periodical/dzgcygczd200805017 [4] 孙建刚, 张丽, 袁朝庆.立式储罐基础隔震动力反应特性分析[J].地震工程与工程振动, 2001, 21(3):140-144. doi: 10.3969/j.issn.1000-1301.2001.03.025SUN Jiangang, ZHANG Li, YUAN Zhaoqing. Dynamic characteristic analysis of base isolation for vertical storage tank[J]. Earthquake Engineering and Engineering Vibration, 2001, 21(3):140-144. doi: 10.3969/j.issn.1000-1301.2001.03.025 [5] 孙建刚, 郝进锋, 刘扬, 等.考虑摆动效应的立式储罐隔震分析筒化力学模型[J].振动与冲击, 2016, 35(11):20-27. http://d.wanfangdata.com.cn/Periodical/zdycj201611004SUN Jiangang, HAO Jinfeng, LIU Yang, et al. Simplified mechanical model for vibration isolation analysis of a vertical storage tank considering swinging effect[J]. Journal of Vibration and Shock, 2016, 35(11):20-27. http://d.wanfangdata.com.cn/Periodical/zdycj201611004 [6] 王开志, 杨旭升, 梁秋祥.某部储油罐基础开挖爆破设计[J].工程爆破, 2016, 22(4):77-81. doi: 10.3969/j.issn.1006-7051.2016.04.016WANG Kaizhi, YANG Xusheng, LIANG Qiuxiang. Blast design of oil storage tank foundation excavation[J]. Engineering Blasting, 2016, 22(4):77-81. doi: 10.3969/j.issn.1006-7051.2016.04.016 [7] 许红涛.岩石高边坡爆破动力稳定性研究[D].武汉: 武汉大学, 2006. http://cdmd.cnki.com.cn/Article/CDMD-10486-2008010820.htm [8] 张艳.高层结构地震放大作用及反应分析[D].哈尔滨: 中国地震局工程力学研究所, 2011. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D152445 [9] 毕先志, 张巨伟, 崔晓韵, 等.10×104 m3浮顶储油罐的模态分析[J].当代化工, 2011, 40(9):972-974. doi: 10.3969/j.issn.1671-0460.2011.09.027BI Xianzhi, ZHANG Juwei, CUI Xiaoyun, et al. Modal analysis of 10×104 m3 floating roof storage tank[J]. Contemporary Chemical Industry, 2011, 40(9):972-974. doi: 10.3969/j.issn.1671-0460.2011.09.027 [10] 钱七虎, 陈士海.爆破地震效应[J].爆破, 2004, 21(2):1-5. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb200805009QIAN Qihu, CHEN Shihai. Blasting seismic effect[J]. Blasting, 2004, 21(2):1-5. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb200805009 [11] 于蕾.爆破振动对多层建筑物的安全影响[J].铁道工程学报, 2015, 32(3):86-89. doi: 10.3969/j.issn.1006-2106.2015.03.018YU Lei. Safety influence of blasting vibration on multistory building[J]. Journal of Railway Engineering Society, 2015, 32(3):86-89. doi: 10.3969/j.issn.1006-2106.2015.03.018 [12] 戴鸿哲, 王伟, 吴灵宇.立式储液罐提离机理及"象足"变形产生原因[J].哈尔滨工业大学学报, 2008, 40(8):1189-1193. doi: 10.3321/j.issn:0367-6234.2008.08.003DAI Hongzhe, WANG Wei, WU Lingyu. Uplift mechanism and elephant foot bulging of elevated liquid-storage tank[J]. Journal of Harbin Institute of Technology, 2008, 40(8):1189-1193. doi: 10.3321/j.issn:0367-6234.2008.08.003 [13] AGHAJARI S, ABEDI K, SHOWKATI H. Buckling and post-buckling behavior of thin-walled cylindrical steel shells with varying thickness subjected to uniform external pressure[J]. Thin-Walled Structures, 2006, 44(8):904-909. doi: 10.1016/j.tws.2006.08.015 [14] HÜBNER A, TENG J G, SAAL H. Buckling behaviour of large steel cylinders with patterned welds[J]. International Journal of Pressure Vessels & Piping, 2006, 83(1):13-26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ026060501 [15] 高富强, 张光雄, 杨军.爆破地震荷载作用下建筑结构的动力响应分析[J].爆破, 2015(1):5-10. http://d.old.wanfangdata.com.cn/Periodical/bp201501002GAO Fuqiang, ZHANG Guangxiong, YANG Jun. Dynamic response analysis of building structure under blasting seismic loads[J]. Blasting, 2015(1):5-10. http://d.old.wanfangdata.com.cn/Periodical/bp201501002 [16] 李瑞涛.爆破地震波叠加规律实验研究[D].沈阳: 东北大学, 2008. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1844171 期刊类型引用(12)
1. 贾进章,田秀媛. 瓦斯爆炸抑制研究进展及发展趋势. 安全与环境学报. 2025(01): 95-107 . 百度学术
2. 郑凯,任佳乐,宋晨,贾千航,邢志祥. 泡沫铜对密闭管道内合成气爆炸特性影响的实验研究. 爆炸与冲击. 2024(01): 28-38 . 本站查看
3. 向开军,段玉龙,刘力文. 多孔材料对含重烃煤层气爆炸特性的影响研究. 中国矿业. 2024(08): 184-191 . 百度学术
4. 陈晓坤,王君,程方明. 氢气抑爆材料及其抑爆机理研究进展. 爆炸与冲击. 2024(11): 16-40 . 本站查看
5. 丁清泉,袁必和,陈先锋,黄楚原,贺云龙,张玉铎. PVDF球形多孔材料的抑爆性能研究. 中国安全科学学报. 2023(01): 177-182 . 百度学术
6. 王皓楠,戚承志,陈昊祥,罗伊. 多孔结构对地下综合管廊燃气爆炸的抑制效应. 消防科学与技术. 2023(02): 164-171 . 百度学术
7. 王健,余靖宇,凡子尧,郑立刚,刘贵龙,赵永贤. 组合多孔介质与氮气幕协同抑制瓦斯爆炸实验研究. 爆炸与冲击. 2023(10): 185-194 . 本站查看
8. 张保勇,陶金,崔嘉瑞,张义宇,王亚军,韩永辉,孙曼. 波纹结构迎爆面泡沫金属对甲烷-空气混合气体爆炸能量的吸收特性. 爆炸与冲击. 2023(11): 168-179 . 本站查看
9. 左亚帅,张会锁,姚静晓,李强,焦军虎. 水滴帷幕对战斗部自动化生产线防殉爆性能仿真. 兵工自动化. 2022(05): 85-91 . 百度学术
10. 王一昊,凌晓东,辛保泉,卢卫,姜雪. 石化装置燃爆事故后果与防控模拟研究. 安全、健康和环境. 2022(04): 28-32 . 百度学术
11. 郑露露,龙凤英,温子阳,李泽欢,段玉龙. 多孔材料-CO_2对CH_4/H_2抑爆失效研究. 安全. 2022(09): 24-30+36 . 百度学术
12. 陈硕,路长,苏振国,孟琪,刘金刚. 煤矿瓦斯爆炸发展规律及防治的综述及展望. 火灾科学. 2021(02): 63-79 . 百度学术
其他类型引用(14)
-