Preliminary analysis of underwater detonation performance of titanium fiber explosive
-
摘要: 通过爆炸压力时程曲线分析含钛纤维炸药的压力峰值、水下比冲击波能、比气泡能、质量能量及能量密度变化趋势,通过对所得能量结果分析钛纤维炸药的化学反应过程。结果表明:含钛纤维炸药的压力峰值、比冲击波能随钛纤维含量的提高而降低,比气泡能随钛纤维含量的提高而增大,质量能量及能量密度都随钛纤维含量的提高而增大。随距离的增大,钛纤维炸药压力峰值衰减比RDX的慢,而不同钛纤维含量的钛纤维炸药的比冲击波能、比气泡能在不同距离处随钛纤维含量变化趋势基本一致。根据炸药反应释放的总比能量进行理论分析,得出钛纤维炸药爆炸反应方程式。Abstract: In this study we examined the changing tendency of the shock wave energy, bubble energy, total energy per unit mass and the total energy per unit volume by analysis of the pressure-time curves, and analyzed the chemical reaction process of the Ti fiber explosive through the total energy per unit mass. The results show that the peak pressure and the shock wave energy of the Ti fiber explosive per unit decreases as the Ti fiber content increases, the bubble energy per unit mass increases with the increase of the Ti fiber content, the total energy per unit mass and its energy density increase with the increase of the Ti fiber content. With the increase of the distance between the sensor and explosive, the rate of the Ti fiber explosive's peak pressure decay is slower than that of RDX, while the tendency of the shock wave energy and the bubble energy per unit mass with different contents of the Ti fiber explosive is basically in keeping with the increase of the distance. The chemical reaction process of the Ti fiber explosive was also obtained through the total energy per unit mass.
-
表 1 含钛纤维炸药配方
Table 1. The formulation of Ti fiber explosive
序号 φ/% RDX Ti wax 1 95 0 5 2 95 5 0 3 90 10 0 4 85 15 0 表 2 含钛纤维炸药在不同距离处各质量分数下的压力峰值
Table 2. The peak pressure of Ti-fiber explosive at different distances and different mass fraction
R/m pm/MPa φ(Ti)=0% φ(Ti)=5% φ(Ti)=10% φ(Ti)=15% 1.0 8.76 7.21 6.91 6.75 1.2 6.57 6.41 6.29 6.23 表 3 含钛纤维炸药在不同距离处各质量分数下的压力峰值降低百分比
Table 3. Percentage reduction in peak pressure of Ti-fiber explosive at different distances and different mass fraction
R/m (pm(0)-pm(5%))/pm(0) (pm(5%)-pm(10%))/pm(5%) (pm(10%)-pm(15%))/pm(10%) φ(Ti)=5% φ(Ti)=10% φ(Ti)=15% 1.0 17.69% 4.16% 2.32% 1.2 2.44% 1.87% 0.95% -
[1] 陈朗, 龙新平, 冯长根, 等.含铝炸药爆轰[M].北京:国防工业出版社, 2004:1-2. [2] 冯晓军, 王晓峰, 徐洪涛, 等.Al粉对炸药爆炸加速能力的影响[J].火炸药学报, 2014, 37(5):25-32. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bgxb201405006&dbname=CJFD&dbcode=CJFQFENG Xiaojun, WANG Xiaofeng, XU Hongtao, et al. Influence of Al powder on the explosion acceleration ability for explosives[J]. Chinese Journal of Explosives & Propellants, 2014, 37(5):25-32. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bgxb201405006&dbname=CJFD&dbcode=CJFQ [3] 周俊祥, 于国辉, 李澎, 等.RDX/Al含铝炸药水下爆炸实验研究[J].爆破, 2005, 22(2):4-10. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bopo200502002&dbname=CJFD&dbcode=CJFQZHOU Junxiang, YU Guohui, LI Peng, et al. Experimental study of the aluminized explosive RDX/Al explosion underwater[J]. Blasting, 2005, 22(2):4-10. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bopo200502002&dbname=CJFD&dbcode=CJFQ [4] MAKHOV M N. Effect of aluminum and boron additives on the heat of explosion and acceleration ability of high explosives[J]. Russian Journal of Physical Chemistry B, 2015, 9(1):50-55. doi: 10.1134/S199079311501008X [5] 黄亚峰, 王晓峰, 赵东奎.RDX基含硼炸药的能量特性[J].火炸药学报, 2015, 38(2):39-42. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bgxb201502008&dbname=CJFD&dbcode=CJFQHUANG Yafeng, WANG Xiaofeng, ZHAO Dongkui. Energy characteristics of RDX-based boron-contained explosive[J]. Chinese Journal of Explosives & Propellants, 2015, 38(2):39-42. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bgxb201502008&dbname=CJFD&dbcode=CJFQ [6] 许国栋, 王桂生.钛金属和钛产业的发展[J].稀有金属, 2009, 33(6):903-912. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zxjs200906029&dbname=CJFD&dbcode=CJFQXU Guodong, WANG Guisheng. Development of titanium and its industry[J]. Chinese Journal of Rare Metals, 2009, 33(6):903-912. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zxjs200906029&dbname=CJFD&dbcode=CJFQ [7] 奥尔连科Л П. 爆炸物理学[M]. 孙承纬, 译. 北京: 科学出版社, 2011: 608-609. [8] ETHRIDGE N. A procedure for reading and smoothing pressure-time data from HE and nuclear explosions[R]. Maryland: Army Ballistic Research Laboratories, 1965. [9] 谈庆明.量纲分析[M].合肥:中国科学技术大学出版社, 2005:100-104. [10] KOMISSAROV P V, BORISOV A A, SOKOLOV G N, et al. Experimental comparison of shock and bubble heave energies from underwater explosion of ideal HE and explosive composite mixtures highly enriched with aluminum[J]. Physics Procedia, 2015, 72:18-20. http://www.sciencedirect.com/science/article/pii/S1875389215012754 [11] 王光祖.超硬材料制造与应用技术[M].郑州:郑州大学出版社, 2013:550-558. [12] 王杏, 魏唯濂, 魏绍东.纳米二氧化钛的生产与应用[M].贵州:贵州科技出版社, 2014:19-24. [13] 古滨, 陈博韬, 李烨.反舰导弹战斗部破片对不同材料舰船结构的毁伤研究[J].舰船科学技术, 2016, 38(1):19-23. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jckx201601004&dbname=CJFD&dbcode=CJFQGU Bin, CHEN Botao, LI Ye. Research on damage effect for vessel structures with various attributes from warhead fragments of anti-ship missile[J]. Ship Science and Technology, 2016, 38(1):19-23. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jckx201601004&dbname=CJFD&dbcode=CJFQ [14] 孙业斌, 惠君明, 曹欣茂.军用混合炸药[M].北京:兵器工业出版社, 1995:98-99. [15] 林谋金. 铝纤维炸药爆炸性能与力学性能研究[D]. 合肥: 中国科学技术大学, 2014: 50-69. http://cdmd.cnki.com.cn/Article/CDMD-10358-1014299824.htm [16] 项大林, 荣吉利, 李健.金属壳体装药水下爆炸的冲击波特性[J].爆炸与冲击, 2012, 32(1):67-71. http://www.bzycj.cn/CN/abstract/abstract8615.shtmlXIANG Dalin, RONG Jili, LI Jian. Shock wave features of underwater explosion of explosives with metal shell[J]. Explosion and Shock Waves, 2012, 32(1):67-71. http://www.bzycj.cn/CN/abstract/abstract8615.shtml [17] 金韶华, 松全才.炸药理论[M].西安:西北工业大学出版社, 2010:25-28.