• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

钛基纤维炸药水下爆炸性能的初步分析

陈海军 马宏昊 沈兆武 王波 杨明 崔宇

李猛深, 李杰, 李宏, 施存程, 张宁. 爆炸荷载下钢筋混凝土梁的变形和破坏[J]. 爆炸与冲击, 2015, 35(2): 177-183. doi: 10.11883/1001-1455(2015)02-0177-07
引用本文: 陈海军, 马宏昊, 沈兆武, 王波, 杨明, 崔宇. 钛基纤维炸药水下爆炸性能的初步分析[J]. 爆炸与冲击, 2018, 38(1): 9-18. doi: 10.11883/bzycj-2017-0155
Li Meng-shen, Li Jie, Li Hong, Shi Cun-cheng, Zhang Ning. Deformation and failure of reinforced concrete beams under blast loading[J]. Explosion And Shock Waves, 2015, 35(2): 177-183. doi: 10.11883/1001-1455(2015)02-0177-07
Citation: CHEN Haijun, MA Honghao, SHEN Zhaowu, WANG Bo, YANG Ming, CUI Yu. Preliminary analysis of underwater detonation performance of titanium fiber explosive[J]. Explosion And Shock Waves, 2018, 38(1): 9-18. doi: 10.11883/bzycj-2017-0155

钛基纤维炸药水下爆炸性能的初步分析

doi: 10.11883/bzycj-2017-0155
基金项目: 

国家自然科学基金项目 51674229

国家自然科学基金项目 51374189

中国科学技术大学重要方向培育基金项目 WK2480000002

详细信息
    作者简介:

    陈海军(1993—),男,硕士研究生

    通讯作者:

    马宏昊, hhma@ustc.edu.cn

  • 中图分类号: O382.1

Preliminary analysis of underwater detonation performance of titanium fiber explosive

  • 摘要: 通过爆炸压力时程曲线分析含钛纤维炸药的压力峰值、水下比冲击波能、比气泡能、质量能量及能量密度变化趋势,通过对所得能量结果分析钛纤维炸药的化学反应过程。结果表明:含钛纤维炸药的压力峰值、比冲击波能随钛纤维含量的提高而降低,比气泡能随钛纤维含量的提高而增大,质量能量及能量密度都随钛纤维含量的提高而增大。随距离的增大,钛纤维炸药压力峰值衰减比RDX的慢,而不同钛纤维含量的钛纤维炸药的比冲击波能、比气泡能在不同距离处随钛纤维含量变化趋势基本一致。根据炸药反应释放的总比能量进行理论分析,得出钛纤维炸药爆炸反应方程式。
  • 图  1  钛纤维和铝壳包覆的钛纤维炸药

    Figure  1.  Ti fiber and Ti fiber explosive coated by aluminum shell

    图  2  水下爆炸测量系统布局图

    Figure  2.  System of underwater explosions

    图  3  实验得到的钛纤维炸药水下冲击波压力时程曲线

    Figure  3.  History of pressure for underwater shock wave of Ti-fiber explosive by experiment

    图  4  钛纤维炸药水下爆炸压力对数时程曲线

    Figure  4.  History of logarithmic pressure for underwater explosion of Ti-fiber explosive

    图  5  钛纤维炸药水下爆炸压力时程拟合曲线

    Figure  5.  Fitted history of pressure for underwater shock wave of Ti-fiber explosive

    图  6  钛纤维炸药压力峰值与钛纤维质量分数关系

    Figure  6.  Relationship between the shock wave peak pressure and the mass fraction of Ti fiber

    图  7  比冲击波能与钛纤维质量分数关系

    Figure  7.  Relationship between the shock wave energy per unit mass and the mass fraction of Ti fiber

    图  8  比气泡能与钛纤维质量分数关系

    Figure  8.  Relationship between the bubble energy per unit mass and the mass fraction of Ti fiber

    图  9  总比能量与钛纤维质量分数关系

    Figure  9.  Relationship between the total energy per unit mass and the mass fraction of Ti fiber

    图  10  能量密度与钛纤维质量分数关系

    Figure  10.  Relationship between the energy per unit volume and the mass fraction of Ti fiber

    表  1  含钛纤维炸药配方

    Table  1.   The formulation of Ti fiber explosive

    序号 φ/%
    RDX Ti wax
    1 95 0 5
    2 95 5 0
    3 90 10 0
    4 85 15 0
    下载: 导出CSV

    表  2  含钛纤维炸药在不同距离处各质量分数下的压力峰值

    Table  2.   The peak pressure of Ti-fiber explosive at different distances and different mass fraction

    R/m pm/MPa
    φ(Ti)=0% φ(Ti)=5% φ(Ti)=10% φ(Ti)=15%
    1.0 8.76 7.21 6.91 6.75
    1.2 6.57 6.41 6.29 6.23
    下载: 导出CSV

    表  3  含钛纤维炸药在不同距离处各质量分数下的压力峰值降低百分比

    Table  3.   Percentage reduction in peak pressure of Ti-fiber explosive at different distances and different mass fraction

    R/m (pm(0)-pm(5%))/pm(0) (pm(5%)-pm(10%))/pm(5%) (pm(10%)-pm(15%))/pm(10%)
    φ(Ti)=5% φ(Ti)=10% φ(Ti)=15%
    1.0 17.69% 4.16% 2.32%
    1.2 2.44% 1.87% 0.95%
    下载: 导出CSV
  • [1] 陈朗, 龙新平, 冯长根, 等.含铝炸药爆轰[M].北京:国防工业出版社, 2004:1-2.
    [2] 冯晓军, 王晓峰, 徐洪涛, 等.Al粉对炸药爆炸加速能力的影响[J].火炸药学报, 2014, 37(5):25-32. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bgxb201405006&dbname=CJFD&dbcode=CJFQ

    FENG Xiaojun, WANG Xiaofeng, XU Hongtao, et al. Influence of Al powder on the explosion acceleration ability for explosives[J]. Chinese Journal of Explosives & Propellants, 2014, 37(5):25-32. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bgxb201405006&dbname=CJFD&dbcode=CJFQ
    [3] 周俊祥, 于国辉, 李澎, 等.RDX/Al含铝炸药水下爆炸实验研究[J].爆破, 2005, 22(2):4-10. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bopo200502002&dbname=CJFD&dbcode=CJFQ

    ZHOU Junxiang, YU Guohui, LI Peng, et al. Experimental study of the aluminized explosive RDX/Al explosion underwater[J]. Blasting, 2005, 22(2):4-10. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bopo200502002&dbname=CJFD&dbcode=CJFQ
    [4] MAKHOV M N. Effect of aluminum and boron additives on the heat of explosion and acceleration ability of high explosives[J]. Russian Journal of Physical Chemistry B, 2015, 9(1):50-55. doi: 10.1134/S199079311501008X
    [5] 黄亚峰, 王晓峰, 赵东奎.RDX基含硼炸药的能量特性[J].火炸药学报, 2015, 38(2):39-42. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bgxb201502008&dbname=CJFD&dbcode=CJFQ

    HUANG Yafeng, WANG Xiaofeng, ZHAO Dongkui. Energy characteristics of RDX-based boron-contained explosive[J]. Chinese Journal of Explosives & Propellants, 2015, 38(2):39-42. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bgxb201502008&dbname=CJFD&dbcode=CJFQ
    [6] 许国栋, 王桂生.钛金属和钛产业的发展[J].稀有金属, 2009, 33(6):903-912. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zxjs200906029&dbname=CJFD&dbcode=CJFQ

    XU Guodong, WANG Guisheng. Development of titanium and its industry[J]. Chinese Journal of Rare Metals, 2009, 33(6):903-912. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zxjs200906029&dbname=CJFD&dbcode=CJFQ
    [7] 奥尔连科Л П. 爆炸物理学[M]. 孙承纬, 译. 北京: 科学出版社, 2011: 608-609.
    [8] ETHRIDGE N. A procedure for reading and smoothing pressure-time data from HE and nuclear explosions[R]. Maryland: Army Ballistic Research Laboratories, 1965.
    [9] 谈庆明.量纲分析[M].合肥:中国科学技术大学出版社, 2005:100-104.
    [10] KOMISSAROV P V, BORISOV A A, SOKOLOV G N, et al. Experimental comparison of shock and bubble heave energies from underwater explosion of ideal HE and explosive composite mixtures highly enriched with aluminum[J]. Physics Procedia, 2015, 72:18-20. http://www.sciencedirect.com/science/article/pii/S1875389215012754
    [11] 王光祖.超硬材料制造与应用技术[M].郑州:郑州大学出版社, 2013:550-558.
    [12] 王杏, 魏唯濂, 魏绍东.纳米二氧化钛的生产与应用[M].贵州:贵州科技出版社, 2014:19-24.
    [13] 古滨, 陈博韬, 李烨.反舰导弹战斗部破片对不同材料舰船结构的毁伤研究[J].舰船科学技术, 2016, 38(1):19-23. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jckx201601004&dbname=CJFD&dbcode=CJFQ

    GU Bin, CHEN Botao, LI Ye. Research on damage effect for vessel structures with various attributes from warhead fragments of anti-ship missile[J]. Ship Science and Technology, 2016, 38(1):19-23. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jckx201601004&dbname=CJFD&dbcode=CJFQ
    [14] 孙业斌, 惠君明, 曹欣茂.军用混合炸药[M].北京:兵器工业出版社, 1995:98-99.
    [15] 林谋金. 铝纤维炸药爆炸性能与力学性能研究[D]. 合肥: 中国科学技术大学, 2014: 50-69. http://cdmd.cnki.com.cn/Article/CDMD-10358-1014299824.htm
    [16] 项大林, 荣吉利, 李健.金属壳体装药水下爆炸的冲击波特性[J].爆炸与冲击, 2012, 32(1):67-71. http://www.bzycj.cn/CN/abstract/abstract8615.shtml

    XIANG Dalin, RONG Jili, LI Jian. Shock wave features of underwater explosion of explosives with metal shell[J]. Explosion and Shock Waves, 2012, 32(1):67-71. http://www.bzycj.cn/CN/abstract/abstract8615.shtml
    [17] 金韶华, 松全才.炸药理论[M].西安:西北工业大学出版社, 2010:25-28.
  • 加载中
推荐阅读
钢筋混凝土梁冲击动力响应和破坏模式转化试验研究
宋春明 等, 爆炸与冲击, 2024
柱形装药空中爆炸冲击波荷载研究
王明涛 等, 爆炸与冲击, 2024
爆炸荷载作用下uhpc板的弯曲损伤评估
苏琼 等, 爆炸与冲击, 2023
脆性梁弯曲断裂所激发的弯曲波
王志强 等, 爆炸与冲击, 2024
火灾对钢筋混凝土简支梁破坏形式的影响
张峥 等, 计算机辅助工程, 2022
负压爆炸载荷作用下固支钢板变形研究
杨锐 等, 高压物理学报, 2023
基于dic方法研究混凝土劈裂的变形和破坏
任会兰 等, 高压物理学报, 2022
Recent understanding of the mechanisms of the biological activities of hesperidin and hesperetin and their therapeutic effects on diseases
Ji, Zhongkai et al., HELIYON, 2024
Experimental study of predamaged columns strengthened by hpfl and bsp under combined load cases
STRUCTURE AND INFRASTRUCTURE ENGINEERING
Equivalent method of stiffened plates for dynamic response and damage assessment under internal blast
STRUCTURES, 2025
Powered by
图(10) / 表(3)
计量
  • 文章访问数:  5697
  • HTML全文浏览量:  1319
  • PDF下载量:  443
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-04
  • 修回日期:  2017-10-09
  • 刊出日期:  2018-01-25

目录

    /

    返回文章
    返回