Application of multi-objective optimization algorithm to motional simulation of bullets penetrating ballistic gelatin
-
摘要: 为使弹道模型更好地模拟弹头侵彻明胶的运动规律,从而有助于揭示弹头对人体组织的致伤机理,以弹头水平位移、竖直位移、侧向位移、俯仰角以及偏航角理论值的均方根误差作为目标函数组,以弹头的待定初始运动参数和弹道模型的待定力学系数作为优化变量,通过Gamultiobj多目标遗传算法获得了的优化变量的Pareto解集,并通过TOPSIS综合分析方法获得了Pareto解集的最优解。研究结果表明该方法能够快速获得可信性较强的最优解,使最优解能较好地模拟7.62 mm步枪弹侵彻明胶的运动过程。Abstract: To find out about the wounding mechanisms of bullets penetrating human bodies, we simulated in this work the processes of bullets penetrating ballistic gelatin using the ballistic model. By taking the root mean squares of the theoretical errors of the horizontal displacements, the vertical displacements, the lateral displacements, the pitch angles and the yaw angles as the objective functions, treating the undetermined initial parameters of the bullet and the force coefficients in the ballistic model as the optimization variables, and using the Gamultiobj method, one of the multi-objective algorithms, we successfully found the set of the Pareto solutions to the objective functions, and selected the optimum solution to the optimization variables through the TOPSIS strategy from the Pareto solutions. Our studies show that the optimum solution is reliable and can present precise simulation of the motions of the 7.62 mm rifle bullet.
-
Key words:
- multi-objective optimization /
- rifle bullet /
- gelatin /
- penetration
-
表 1 待优化力学系数的取值范围
Table 1. Bounds of undetermined mechanical coefficients
边界 CD0 C1 CL0 CM0 下界 0 0 0 0 上界 0.1 15.0 1.0 0.2 表 2 待优化力学系数的最优解
Table 2. Optimum solutions of undetermined mechanical coefficients
序号 C1 CD0 CL0 CM0 vx0/
(m·s-1)vy0/
(m·s-1)vz0/
(m·s-1)θ0/
(°)ψ0/
(°)θt0/
(rad·s-1)ψt0/
(rad·s-1)φt0/
(rad·s-1)1 7.49 0.058 6 0.636 0.064 7 -22.4 -14.20 713 1.910 68.8 1 020 1 220 15 400 2 8.89 0.066 2 0.669 0.082 9 15.3 -17.40 703 0.115 68.8 1 470 1 910 17 600 3 7.72 0.051 3 0.744 0.091 1 23.5 4.10 720 0.281 81.4 1 220 2 200 19 100 4 10.90 0.064 2 0.723 0.071 9 18.3 7.73 717 0.728 81.9 1 410 1 840 12 800 5 4.83 0.047 8 0.813 0.062 8 15.6 -16.90 715 0.682 70.5 1 750 2 260 16 900 表 3 最优解对应的目标函数值
Table 3. Values of objective functions corresponding to optimal solutions
序号 σ(1)/mm σ(2)/mm σ(3)/mm σ(4)/(°) σ(5)/(°) 1 2.22 1.59 9.54 5.47 5.02 2 2.35 1.53 6.90 5.39 9.50 3 4.09 1.97 12.1 7.22 11.6 4 3.91 1.65 7.28 11.6 4.30 5 6.79 1.73 12.4 5.42 6.26 -
[1] KNEUBUEHL B P, COUPLAND R M, ROTHSCHILD M A, et al. Wound ballistics, basics and applications[M]. New York:Springer, 2011:136-143. [2] 刘荫秋, 王正国, 马玉媛.创伤弹道学[M].北京:人民军医出版社, 1991:30-33. [3] 程可.轻武器杀伤元对明胶靶标侵彻的数值仿真研究[D].南京: 南京理工大学, 2012: 15-19. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2061965 [4] LIU S S, XU C, CHEN A J, et al. Effect of rifle bullet parameters on the penetration into ballistic gelatin[J]. Journal of Beijing Institiute of Technology, 2015, 24(4):487-493. DOI: 10.15918/j.jbit1004-0579.201524.0409. [5] WEN Y, XU C, JIN Y, et al. Rifle bullet penetration into ballistic gelatin[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 67:40-50. DOI: 10.1016/j.jmbbm.2016.11.021. [6] 温垚珂, 徐诚, 陈爱军, 等.步枪弹侵彻明胶靶标的数值模拟[J].兵工学报, 2013, 34(1):14-19. DOI: 10.3969/j.issn.1000-1093.2013.01.003.WEN Yaoke, XU Cheng, CHEN Aijun, et al. Numerical simulation of the penetration of bullet on gelatin target[J]. Acta Armamentarii, 2013, 34(1):14-19. DOI: 10.3969/j.issn.1000-1093.2013.01.003. [7] DATOC D. Finite element analysis and modeling of a.38 lead round nose ballistic gelatin test[D]. Ponoma: California Polytechnic State University, 2010: 20-55. [8] WANG Y, SHI X, CHEN A, et al. The experimental and numerical investigation of pistol bullet penetrating soft tissue simulant[J]. Forensic Science International, 2015, 249C:271-279. DOI: 10.1016/j.forsciint.2015.02.013. [9] YOON G H, MO J S, KIM K H, et al. Investigation of bullet penetration in ballistic gelatin via finite element simulation and experiment[J]. Journal of Mechanical Science and Technology, 2015, 29(9):3747-3759. DOI: 10.1007/s12206-015-0821-7. [10] 刘坤, 吴志林, 徐万和, 等.弹头侵彻明胶的运动模型[J].爆炸与冲击, 2012, 32(6):616-622. doi: 10.3969/j.issn.1001-1455.2012.06.010LIU Kun, WU Zhilin, XU Wanhe, et al. A motion model for bullet penetrating gelatin[J]. Explosion and Shock Waves, 2012, 32(6):616-622. doi: 10.3969/j.issn.1001-1455.2012.06.010 [11] LIU S, XU C, WEN Y, et al. A new motion model of rifle bullet penetration into ballistic gelatin[J]. International Journal of Impact Engineering, 2016, 93:1-10. DOI: 10.1016/j.ijimpeng.2016.02.003. [12] 莫根林, 吴志林, 冯杰, 等.步枪弹侵彻明胶的表面受力模型[J].兵工学报, 2014, 35(2):164-169. DOI: 10.3969/j.issn.1000-1093.2014.02.004.MO Genlin, WU Zhilin, FENG Jie, et al. Surface pressure model of rifle bullets penetrating into ballistic gelatin[J]. Acta Armamentarii. 2014, 35(2):164-169. DOI: 10.3969/j.issn.1000-1093.2014.02.004. [13] 戴光明, 王茂才.多目标优化算法及在卫星星座设计中的应用[M].湖北:中国地质大学出版社, 2009:1-9. [14] 崔逊学.多目标进化算法及其应用[M].北京:国防工业出版社, 2008:48-70. [15] 张延教.高等动力学[M].南京:华东工程学院, 1984:56-280. [16] 郁磊.MATLAB智能算法30个案例分析[M].北京:北京航空航天大学出版社, 2015:89-101. [17] 杨路春, 李学斌, 丁明君, 等.多目标遗传算法和决策在船型论证中的应用[J].哈尔滨工程大学学报, 2012, 33(12):1459-1464. DOI: 10.3969/j.issn.1006-7043.201203053.YANG Luchun, LI Xuebin, DING Mingjun, et al. Application of multi-objective genetic algorithm and decision-making skills in ship form evaluation[J]. Journal of Harbin Engineering University, 2012, 33(12):1459-1464. DOI: 10.3969/j.issn.1006-7043.201203053. [18] 叶义成, 柯丽华, 黄德育.系统综合评价技术及其应用[M].北京:冶金工业出版社, 2006:52-56. [19] 高乃同.自动武器弹药学[M].北京:国防工业出版社, 1990:334-336.