Effect of obstacles on explosion characteristics of methane/hydrogen
-
摘要: 通过自主搭建的小尺寸实验平台,研究管道内障碍物阻塞率及形状对当量比为1时甲烷/氢气爆炸特性的影响。研究结果表明:相同工况下火焰传播结构基本相似,预混火焰传播路径随障碍物阻塞率增大而变窄;预混火焰传播速度随着障碍物阻塞率与氢气体积分数的增大而上升,也随着障碍物形状的改变而产生变化;最大爆炸超压随着障碍物阻塞率和氢气体积分数的增大而增大,达到最大爆炸超压的时间随着阻塞率的增大而缩短;混合气体在管道内爆炸特性受障碍物与混合气体中氢气体积分数共同影响,氢气体积分数小于50%时,受障碍物与混合气体共同影响,氢气体积分数大于50%时,主要受混合气体燃烧特性影响。此研究能够为甲烷/氢气的安全利用提供理论基础。Abstract: The effects of the blocking rate and shape of obstacles on the explosion characteristics of methane/hydrogen at the stoichiometric mixture were investigated using experimental facilities fabricated by ourselves. The results demonstrate that there are similar trends in the flame evolution structure obtained from all hydrogen fractions for the same condition, i.e. the blocking rate increases as the premixed flame propagation channel become more narrow; the rate of the premixed flame propagation increases along with the blocking rate and hydrogen fraction, and changes with the obstacle shape. Increasing the blocking rate and the hydrogen fraction enhances the maximum overpressure and speeds up the time of the arrival of the maximum overpressure; both the blocking rate and the hydrogen fraction affect the explosion characteristics of methane/hydrogen, and the explosion characteristics are affected by the blocking rate and the hydrogen fraction when the hydrogen fraction comes below 50%, but by the combustion characteristics of the premixed gas when it comes above 50%. This research can provide a theoretical foundation for the safe use of methane/hydrogen fuel.
-
Key words:
- blocking rate /
- obstacle shape /
- methane/hydrogen /
- explosion characteristics
-
表 1 预混火焰传播至出口所需时间
Table 1. Time of flame needed to arrive at the vent
φ/% t/ms 工况1 工况2 工况3 工况4 0 34.30 31.95 30.45 28.75 25 25.68 24.95 23.90 22.90 50 19.40 18.45 17.30 16.20 75 11.58 11.30 10.45 9.50 100 5.45 5.40 5.00 5.14 -
[1] MA Q J, ZHANG Q, CHEN J C, et al. Effects of hydrogen on combustion characteristics of methane in air[J]. International Journal of Hydrogen Energy, 2014, 39(21):11291-11298. DOI: 10.1016/j.ijhydene.2014.05.030. [2] MA Q J, ZHANG Q, PANG L, et al. Effects of hydrogen addition on the confined and vented explosion behavior of methane in air[J]. Journal of Loss Prevention in the Process Industries, 2014, 27(1):65-73. DOI: 10.1016/j.jlp.2013.11.007. [3] YU M G, ZHENG K, ZHENG L G, et al. Effects of hydrogen addition on propagation characteristics of premixed methane/air flames[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6):1-9. DOI: 10.1016/j.jlp.2015.01.017. [4] SALZANO E, CAMMAROTA F, BENEDETTO D A, et al. Explosion behavior of hydrogen-methane/air mixtures[J]. Journal of Loss Prevention in the Process Industries, 2012, 25(3):443-447. DOI: 10.1016/j.jlp.2011.11.010. [5] FAGHIH M, GOU X L, CHEN Z. The explosion characteristics of methane, hydrogen and their mixtures: A computational study[J]. Journal of Loss Prevention in the Process Industries, 2016, 40(22):131-138. DOI: 10.1016/j.jlp.2015.12.015. [6] 林柏泉, 周世宁, 张仁贵.障碍物对瓦斯爆炸过程中火焰和爆炸波的影响[J].中国矿业大学学报, 1999, 28(2):104-107. DOI: 10.3321/j.issn:1000-1964.1992.02.002.LIN Baiquan, ZHOU Shining, ZHANG Rengui. Influence of barriers on flame transmission and explosion wave in gas explosion[J]. Journal of China University of Mining and Technology, 1999, 28(2):104-107. DOI: 10.3321/j.issn:1000-1964.1992.02.002. [7] OH K H, KIM H, KIM J B, et al. A study on the obstacle-induced variation of the gas explosion characteristics[J]. Journal of Loss Prevention in the Process Industries, 2001, 14(6):597-602. DOI: 10.1016/S0950-4230(01)00054-7. [8] MASRI A R, IBRAHIM S S, NEHZAT N, et al. Experimental study of premixed flame propagation over various solid obstructions[J]. Experimental Thermal and Fluid Science, 2000, 21(1/2/3):109-116. DOI: 10.1016/S0894-1777(99)00060-6. [9] YU L X, SUN W C, WU C K. Flame acceleration and overpressure development in a semiopen tube with repeated obstacles[J]. Proceedings of the Combustion Institute, 2002, 29(1):321-327. DOI: 10.1016/S1540-7489(02)80043-8. [10] PARK D J, GREEN A R, LEE Y S, et al. Experimental studies on interactions between a freely propagating flame and single obstacles in a rectangular confinement[J]. Combustion and Flame, 2007, 150(1/2):27-39. DOI: 10.1016/j.combustflame.2007.04.005. [11] HALL R, MASRI A R, YAROSHCHYK P, et al. Effects of position and frequency of obstacles on turbulent premixed propagating flames[J]. Combustion and Flame, 2009, 156(2):439-446. DOI: 10.1016/j.combustflame.2008.08.002. [12] 丁以斌, 肖福全, 宣晓燕, 等.5种结构障碍物对火焰传播影响的试验研究[J].中国安全科学学报, 2011, 21(2):63-67.DOI: 10.3969/j.issn.1003-3033.2011.02.011.DING Yibin, XIAO Fuquan, XUAN Xiaoyan, et al. Experimental study on the effects of five different shaped obstacles on flame propagation[J]. China Safety Science Journal, 2011, 21(2):63-67. DOI: 10.3969/j.issn.1003-3033.2011.02.011. [13] 王成, 回岩, 胡斌斌.障碍物形状对瓦斯爆炸火焰传播过程的影响[J].北京理工大学学报, 2015, 35(7):661-665.DOI: 10.15918/j.tbit1001-0645.2015.07.001.WANG Cheng, HUI Yan, HU Binbin. Effect of obstacle shape on gas explosion flame propagation process[J]. Transactions of Beijing Institute of Technology, 2015, 35(7):661-665. DOI: 10.15918/j.tbit1001-0645.2015.07.001. [14] WEN X P, YU M G, LIU Z C, et al. Effects of cross-wise obstacle position on methane-air deflagration characteristics[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6):1336-1340. DOI: 10.1016/j.jlp.2013.08.006. [15] NA'INNA A M, PHYLAKTOU H N, ANDREWS G E. The acceleration of flames in tube explosions with two obstacles as a function of the obstacle separation distance[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6):1597-1603. DOI: 10.1016/j.jlp.2013.08.003. [16] NA'INNA A M, SOMUANO G B, PHYLAKTOU H N. Flame acceleration in tube explosions with up to three flat-bar obstacles with variable obstacle separation distance[J]. Journal of Loss Prevention in the Process Industries, 2015, 28:819-124. DOI: 10.1016/j.jlp.2015.08.009. [17] JOHANSEN C, CICCARELLI G. Modeling the initial flame acceleration in an obstructed channel using large eddy simulation[J]. Journal of Loss Prevention in the Process industries, 2013, 26(4):571-585. DOI: 10.1016/j.jlp.2012.12.005. [18] BYCHKOV V, AKKERMAN V, FRU G, et al. Flame acceleration in the early stages of burning in tubes[J]. Combustion and Flame, 2007, 150(4):263-276. DOI: 10.1016/j.combustflame.2007.01.004. [19] CICCARELLI G, JOHANSEN C T, PARRAVANI M. The role of shock-flame interactions on flame acceleration in an obstacle laden channel[J]. Combustion and Flame, 2010, 157(11):2126-2136. DOI: 10.1016/j.combustflame.2010.05.003. [20] 余明高, 袁晨樵, 郑凯.管道内障碍物对加氢甲烷爆炸特性的影响[J].化工学报, 2016, 67(12):5311-5318. DOI: 10.11949/j.issn.0438-1157.20160645.YU Minggao, YUAN Chenqiao, ZHENG Kai. Effects of hydrogen addition on explosion characteristics of gas under condition of obstacles[J]. CIESC Journal, 2016, 67(12):5311-5318. DOI: 10.11949/j.issn.0438-1157.20160645. [21] LI D, ZHANG Q, MA Q J, et al. Comparison of explosion characteristics between hydrogen/air and methane/air at the stoichiometric concentrations[J]. International Journal of Hydrogen Energy, 2015, 40(28):8761-8768. DOI: 10.1016/j.ijhydene.2015.05.038. [22] ZHENG K, YU M G, ZHENG L G, et al. Effects of hydrogen addition on methane-air deflagration in obstructed chamber[J]. Experimental Thermal and Fluid Science, 2017, 80(8):270-280. DOI: 10.1016/j.expthermflusci.2016.08.025. [23] MCGARRY J P, AHMED K A. Flame-turbulence interaction of laminar premixed deflagrated flames[J]. Combustion and Flame, 2017, 176(11):439-450. DOI: 10.1016/j.combustflame.2016.11.002. [24] IBRAHIM S S, MASRI A R. The effects of obstructions on overpressure resulting from premixed flame deflagration[J]. Journal of Loss Prevention in the Process Industries, 2001, 14(3):213-221. DOI: 10.1016/S0950-4230(00)00024-3.