A S-wave phase picking method for blasting seismic waves and its application in engineering
-
摘要: S波震相初至时刻的精确识别是岩石动力学参数反演的关键环节。其拾取的精度和速度直接影响到岩石动力学参数反演的精度和效率。对S波的识别研究大多都集中在地震领域,现有方法难以有效的识别工程尺度下的爆破地震波S波的到时。本文中拟提出一种适用于工程尺度下S波的识别方法。该方法不对振动信号进行滤波处理,采用短时平均过零率、偏转角、偏振度和横向能量与总能量比值等4个识别参数对S波进行识别。结合丰宁抽水蓄能电站地质勘探洞爆破实验实测数据识别效果与数值模拟结果表明:该方法在工程尺度下的识别误差小于3%。该算法能较好地适用于工程尺度下S波初至时刻进行识别。Abstract: The initial and precise identification of the S-wave phase is a crucial step in the inverse analysis of dynamical mechanical parameters of rock mass. The efficiency and precision in this identification is directly linked with those of the dynamical parameters' inversion. Currently, the S-wave identification focuses mostly on the earthquake science and it is still difficult to effectively identify the S-wave phase on an engineering scale. This paper proposes a method that can be effectively used in engineering. Here, by using the four characteristic functions including the short time average cross zero ratio, the deflection angle, the degree of polarization and the ratio of the transversal to the total energy, this method identified the S-wave phase, without having to go through the filtering processes. Combining the identification result of some data from the blasting field experiments in the Fengning hydro power station with our numerical simulation, we validated this method, showing that its relative error is below 3% and that the method is effective, simple and suitable for the S-wave phase identification on the engineering scale.
-
表 1 统计平均值
Table 1. Statistical averages
P波震相初至 P波尾波 S波震相初至 F2=0 0<F2<1 F2=1 F3=1 0<F3<1 F3=1 F4=0 0<F4<1 F4=1 表 2 岩体物理参数
Table 2. Physical parameters of rock mass
ρ/(kg·m-3) E/GPa ν σb/MPa 损伤参数 KⅠ/(MN·m-3/2) λ/(kg·J-1) k m 2 530 40 0.22 2 2.33×1024 7 0.92 0.000 1 表 3 实验数据与理论模型结果对比
Table 3. Comparison between experimental and theoretical data
R/m t/ms ε/% 实验 理论 10 3.85 3.92 1.3 15 5.90 5.89 0.3 表 4 竖直钻孔爆破实验参数
Table 4. Parameters of blasting experiment
炮孔编号 起爆位置 D/mm h/cm d/mm L/cm Lb/cm m/kg Ⅰ-1 上、底部 76 800 50 600 200 12.0 Ⅰ-2 底部 76 800 50 600 200 12.0 Ⅱ-1 中部 76 600 50 420 180 8.4 Ⅱ-2 底部 76 600 50 420 180 8.4 Ⅲ-1 中部 76 450 50 270 180 5.4 Ⅲ-2 底部 76 450 50 270 180 5.4 注:∅50 mm药卷由2节∅32 mm炸药捆绑而成。 表 5 实验S波震相初至时刻识别结果
Table 5. S-wave arrival identification in experiment
炮孔编号 t/ms 1# 2# 3# 4# 5# 6# Ⅰ-1 431.63 3.25 5.50 8.75 12.13 11.25 Ⅰ-2 899.50 471.13 473.13 476.50 479.88 478.63 Ⅱ-1 1 533.63 1 105.13 1 107.00 1 110.25 1 113.38 1 112.50 Ⅱ-2 1 630.88 1 202.50 1 204.25 1 207.50 1 210.13 1 209.88 Ⅲ-1 2 585.00 2 156.50 2 158.50 2 161.88 2 164.00 2 164.13 Ⅲ-2 3 054.88 2 626.38 2 628.25 2 631.63 2 634.00 633.75 -
[1] 金李, 卢文波, 陈明, 等.节理岩体的爆破松动机理[J].爆炸与冲击, 2009, 29(5):474-480. http://www.bzycj.cn/CN/abstract/abstract8963.shtmlJIN Li, LU Wenbo, CHEN Ming, et al. Mechanism of jointed rock loosing under blasting load[J]. Explosion and Shock Waves, 2009, 29(5):474-480. http://www.bzycj.cn/CN/abstract/abstract8963.shtml [2] 钟冬望, 吴亮, 余刚.邻近隧道掘进爆破对既有隧道的影响[J].爆炸与冲击, 2010, 30(5):456-462. http://www.bzycj.cn/CN/abstract/abstract8775.shtmlZHONG Dongwang, WU Liang, YU Gang. Effect of tunneling blasting on an existing adjacent tunnel[J]. Explosion and Shock Waves, 2010, 30(5):456-462. http://www.bzycj.cn/CN/abstract/abstract8775.shtml [3] 罗忆, 卢文波, 周创兵, 等.高地应力条件下地下厂房开挖动态卸荷引起的变形突变机制研究[J].岩土力学, 2011, 32(5):1553-1560. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ytlx201105041&dbname=CJFD&dbcode=CJFQLUO Yi, LU Wenbo, ZHOU Chuangbing, et al. Mechanism study of abrupt deformation of underground powerhouse induced by excavation unloading under high in-situ stress[J]. Rock and Soil Mechanics, 2011, 32(5):1553-1560. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ytlx201105041&dbname=CJFD&dbcode=CJFQ [4] 朱俊, 杨建华, 卢文波, 等.地应力影响下隧洞边墙的爆破振动安全[J].爆炸与冲击, 2014, 34(2):153-160. http://www.bzycj.cn/CN/abstract/abstract8703.shtmlZHU Jun, YANG Jianhua, LU Wenbo, et al. Influences of blasting vibration on the sidewall of underground tunnel[J]. Explosion and Shock Waves, 2014, 34(2):153-160. http://www.bzycj.cn/CN/abstract/abstract8703.shtml [5] 宋彦辉, 巨广宏, 孙苗.岩体波速与坝基岩体变形模量关系[J].岩土力学, 2011, 32(5):1507-1513. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ytlx201105035&dbname=CJFD&dbcode=CJFQSONG Yanhui, JU Guanghong, SUN Miao. Relationship between wave velocity and deformation modulus of rock masses[J]. Rock and Soil Mechanics, 2011, 32(5), 1507-1513. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ytlx201105035&dbname=CJFD&dbcode=CJFQ [6] BAER M, KRADOLFER U. An automatic phase picker for local and tele-seismic events[J]. Bulletin of the Seismological Society of America, 1987, 77(4):1437-1445. http://www.mendeley.com/catalog/automatic-phase-picker-local-teleseismic-events/ [7] STEVENSON P R. Micro-earthquakes at flathead lake, montana: A study using automatic earthquake processing[J]. Bulletin of the Seismological Society of America, 1976, 66(1):61-80. https://pubs.geoscienceworld.org/ssa/bssa/article-abstract/66/1/61/117512/microearthquakes-at-flathead-lake-montana-a-study?redirectedFrom=fulltext [8] PARK J, VERNON F V, LINDBERG C R. Frequency dependent polarization analysis of high-frequency seismograms[J]. Journal of Geophysical Research, 1987, 92(B12):12664-12674. doi: 10.1029/JB092iB12p12664 [9] ALLEN R. Automatic earthquake recognition and timing from single trace[J]. Bulletin of the Seismological Society of America, 1978, 68(5):1521-1532. http://www.mendeley.com/research/automatic-earthquake-recognition-timing-single-traces/ [10] 田优平. 近震P波震相自动识别方法研究[D]. 北京: 中国地震局地球物理研究所, 2015. http://cdmd.cnki.com.cn/Article/CDMD-85401-1015398135.htmTIAN Youping. Study on the automatic identification of local seismic P-phases[D]. Beijing: Institute of Geophysics China Earthquake Administration, 2015. http://cdmd.cnki.com.cn/Article/CDMD-85401-1015398135.htm [11] DIEHL T, DEICHMANN N, KISSLING E, et al. Automatic S-wave picker for local earthquake to mography[J]. Bulletin of the Seismological Society of America, 2009, 99(3):1906-1920. doi: 10.1785/0120080019 [12] BAILLARD C, CRAWFORD W C, BALLU V, et al. An automatic kurtosis-based P-and S-phase picker designed for local seismic networks[J]. Bulletin of the Seismological Society of America, 2014, 104(1):394-409. doi: 10.1785/0120120347 [13] 周彦江, 潘一山.基于小波变换的矿震波的P波和S波的识别[J].煤矿开采, 2007, 12(6):1-4. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=mkkc200706000&dbname=CJFD&dbcode=CJFQZHOU Yanjiang, PAN Yishan. P and S wave identification of rock-burst wave based on wavelet transform[J]. Coal Mining Technology, 2007, 12(6):1-4. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=mkkc200706000&dbname=CJFD&dbcode=CJFQ [14] 刘希强, 周惠兰, 沈萍, 等.用于三分向记录震相识别的小波变换方法[J].地震学报, 2000, 22(2):125-131. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxb200002001&dbname=CJFD&dbcode=CJFQLIU Xiqiang, ZHOU Huilan, SHEN Ping, et al. The method of wavelet transformation for 3-component record wave phase identification[J]. Acta Seismologica Sinica, 2000, 22(2):125-131. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxb200002001&dbname=CJFD&dbcode=CJFQ [15] 何先龙, 佘天莉, 高峰.一种地震P波和S波初至时间自动拾取的新方法[J].地球物理学报, 2016, 59(7):2519-2527. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqwx201607017&dbname=CJFD&dbcode=CJFQHE Xianlong, SHE Tianli, GAO Feng. A new method for picking up arrival times of seismic P and S waves automatically[J]. Chinese Journal of Geophysics, 2016, 59(7):2519-2527. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqwx201607017&dbname=CJFD&dbcode=CJFQ [16] 张楚旋, 李夕兵, 董陇军, 等.三函数四指标矿震信号S波到时拾取方法及应用[J].岩石力学与工程学报, 2015, 34(8):1650-1659. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yslx201508017&dbname=CJFD&dbcode=CJFQZHANG Chuxuan, LI Xibing, DONG Longjun, et al. A S-wave phase picking method with four indicators of three functions for micro-seismic signal in mines[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(8):1650-1659. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yslx201508017&dbname=CJFD&dbcode=CJFQ [17] 曲保安, 刘希强, 蔡寅, 等.近震S波震相实时自动识别方法研究[J].地震学报, 2014, 36(2):200-208. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxb201402005&dbname=CJFD&dbcode=CJFQQU Baoan, LIU Xiqiang, CAI Yin, et al. Method for real-time automatic identification of S-phase: Application to local seismicity[J]. ACTA Seismologica Sinica, 2014, 36(2):200-208. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxb201402005&dbname=CJFD&dbcode=CJFQ [18] CICHOWICZ A, GREEN R W E, BRINK A V Z. Coda polarization properties of high-frequency micro-seismic events[J]. Bulletin of the Seismological Society of America, 1988, 78(3):1297-1318. http://www.mendeley.com/research/coda-polarization-properties-highfrequency-microseismic-events/ [19] BOORE D M. Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra[J]. Bulletin of the Seismological Society of America, 1983, 73(6):1865-1894. http://www.mendeley.com/catalog/stochastic-simulation-highfrequency-ground-motions-based-seismological-models-radiated-spectra/ [20] KANASEWICH E R. Time sequence analysis in geophysics[M]. 3rd ed. Alberta: The university of Alberta press, 1981:80-112. [21] 杨建华, 卢文波, 严鹏, 等.全断面开挖爆破产生的自由面对振动频率的影响研究[J].振动与冲击, 2016, 35(7):192-197. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zdcj201607030&dbname=CJFD&dbcode=CJFQYANG Jianhua, LU Wenbo, YAN Peng, et al. Influences of blast-created free surfaces on blasting vibration frequencies during full-face excavation[J]. Journal of Vibration and Shock, 2016, 35(7):192-197. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zdcj201607030&dbname=CJFD&dbcode=CJFQ [22] AMOROSO O, MAERCKLIN N, ZOLLO A. S-wave identification by polarization filtering and waveform coherence analyses[J]. Bulletin of the Seismological Society of America, 2012, 102(2):854-861.DOI: 10.1785/0120110140.