Experimental techniques of SHPB for calcareous sand and its dynamic behaviors
-
摘要: 开展了11组南海钙质砂和福建石英砂的分离式霍普金森压杆(SHPB)实验,试样相对密实度为90%,厚度分别为10、30和50 mm,得到了冲击荷载下钙质砂和石英砂的应变率时程曲线、应变时程曲线和应力应变关系。实验结果表明:通过严格装样技术可以减小实验设备产生的误差,改变试样厚度、子弹长度、整形器等是实现钙质砂应力平衡和恒应变率的主要手段。在相同的密实度和加载条件下,钙质砂的体积模量和剪切模量约为石英砂的10%,压缩强度和抗剪强度约为石英砂的30%。冲击荷载作用下钙质砂的动态力学性能与石英砂存在较大的差异,因此不能将已有石英砂的研究结果直接用于钙质砂。Abstract: This paper conducted 11 split Hopkinson pressure bar (SHPB) tests on the calcareous sand sampled from a calcareous reef in China and silica sand sampled from Fujian Provence of China. The relative density is 90%. The strain-rate history, strain history, and stress-strain curves were obtained for sand specimens with three thicknesses including 10 mm, 30 mm and 50 mm. It is found that test error can be reduced by standard procedure in sand preparation. The stress equilibrium and constant strain rate can be achieved by changing the thickness of specimen, the length of striker and the pulse shaper. With an identical relative density and loading condition, the volumetric modulus and shear modulus of calcareous sand is approximately 10% of the silica sand; and the strength of the calcareous sand is approximately 30% of the silica sand. Therefore, the results of existing silica sand can not be directly applied to calcareous sand because of their large discrepancies.
-
Key words:
- calcareous sand /
- split Hopkinson pressure bar /
- impact behavior /
- stress-train curve
-
表 1 实验工况
Table 1. Summary of the SHPB tests
实验组号 SHPB杆 编号 厚度/mm 厚径比 实验内容 第1组 ø100 mm T1 - - 空杆+整形器 T2 - - 空杆+整形器+套筒 T3 - - 空杆+整形器+套筒+垫块 第2组 ø100 mm T4 10 0.1 钙质砂 T5 30 0.3 钙质砂 T6 50 0.5 钙质砂 T7 10 0.1 石英砂 T8 30 0.3 石英砂 T9 50 0.5 石英砂 第3组 ø37 mm T10 18 0.5 钙质砂 T11 18 0.5 石英砂 -
[1] 卢芳云, 陈荣.霍普金森杆实验技术[M].北京:科学出版社, 2013. [2] FLETCHER E, POOROOSHASB H. Response of a clay sample to low magnitude loads applied at high rate[C]//Proceedings of the International Symposium on Wave Propagation and Dynamic Properties of Earth Materials. Albuquerque, New Mexico, 1967: 781-86. [3] EINAV I. Breakage mechanics-Part Ⅰ:theory[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(6):1274-1297. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027716581/ [4] LU H, LUO H, KOMADURI R. Dynamic compressive response of sand under confinements[C]//The SEM Annual Conference. Albuquerque, New Mexico, 2009. [5] MARTIN B E, CHEN W. The high-rate behavior of a fine grain sand[C]//Proceedings of the SEM Annual Conference. Albuquerque, New Mexico, 2009: 1-6. [6] SONG B, CHEN W. Dynamic stress equilibration in split Hopkinson pressure bar tests on soft materials[J]. Experimental Mechanics, 2004, 44(3):300-312. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ025429465 [7] FELICE C W, GAFFNEY E S, BROWN J A, et al. Dynamic high stress experiments on soil[J]. Geotechnical Testing Journal, 1987, 10(4):192-202. http://d.old.wanfangdata.com.cn/Periodical/gckc201109003 [8] BARR A D, CLARKE S D, PETKOVSKI M, et al. Modelling split Hopkinson pressure bar tests on quartz sand[C]//The Annual Postgraduate Research Student Conference-2015. Sheffield, UK, 2015: 38-42. [9] BRAGOV A M, LOMUNOV A K, SERGEICHEV I V, et al. Determination of physicomechanical properties of soft soils from medium to high strain rates[J]. International Journal of Impact Engineering, 2008, 35(2008):967-976. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ023738780 [10] 皮爱如, 沈兆武, 王肖钧.土壤冲击特性的实验研究[J].振动与冲击, 2003, 22(3):28-29. doi: 10.3969/j.issn.1000-3835.2003.03.008PI Airu, SHEN Zhaowu, WANG Xiaojun. Experimental study of impact characteristic of soil[J]. Journal of Vibration and Shock, 2003, 22(3):28-29. doi: 10.3969/j.issn.1000-3835.2003.03.008 [11] SONG B, CHEN W, LUK V. Impact compressive response of dry sand[J]. Mechanics of Materials, 2009, 41(6):777-785. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0214460883 [12] 郑文, 徐松林, 胡时胜.侧限压缩下干燥砂的动态力学性能[J].爆炸与冲击, 2011, 31(6):619-623. http://www.bzycj.cn/CN/abstract/abstract8746.shtmlZHENG Wen, XU Songlin, HU Shisheng. Dyanmic mechanical properties of dry sand under confined compression[J]. Explosion and Shock Waves, 2011, 31(6):619-623. http://www.bzycj.cn/CN/abstract/abstract8746.shtml [13] 江浩.钙质砂中桩基工程承载形状研究[D].武汉: 中国科学院武汉岩土力学研究所, 2009. http://cdmd.cnki.com.cn/Article/CDMD-80005-2009156804.htm [14] 佘殷鹏, 吕亚茹, 李峰, 等.珊瑚砂剪切特性试验分析[J].解放军理工大学学报(自然科学版), 2017, 18(1):29-35. http://d.old.wanfangdata.com.cn/Periodical/jfjlgdxxb201701005SHE Yinpeng, LYU Yaru, LI Feng, et al. Experimental analyses of shearing mechanism of coral sand[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2017, 18(1):29-35. http://d.old.wanfangdata.com.cn/Periodical/jfjlgdxxb201701005 [15] 单华刚, 汪稔.钙质砂中的桩基工程研究进展述评[J].岩土力学, 2000, 21(3):299-308. doi: 10.3969/j.issn.1000-7598.2000.03.027SHAN Huagang, WANG Ren. Development of study on pile in calcareous sand[J]. Rock and Soil Mechanics, 2000, 21(3):299-308. doi: 10.3969/j.issn.1000-7598.2000.03.027 [16] 张家铭, 蒋国盛, 汪稔.颗粒破碎及剪胀对钙质砂抗剪强度影响研究[J].岩土力学, 2009, 30(7):2043-2048. doi: 10.3969/j.issn.1000-7598.2009.07.029ZHANG Jiaming, JIANG Guosheng, WANG Ren. Research on influences of particle breakage and dilatancy on shear strength of calcareous sands[J]. Rock and Soil Mechanics, 2009, 30(7):2043-2048. doi: 10.3969/j.issn.1000-7598.2009.07.029 [17] 袁征, 余克服, 王英辉, 等.珊瑚礁岩土的工程地质特性研究进展[J].热带地理, 2016, 36(1):1-7. http://d.old.wanfangdata.com.cn/Periodical/rddl201601013YUAN Zheng, YU Kefu, WANG Yinghui, et al. Research progress in the engineering geological characteristics of coral reefs[J]. Tropical Geography, 2016, 36(1):87-93. http://d.old.wanfangdata.com.cn/Periodical/rddl201601013 [18] LV Y, LI F, LIU Y, et al. Comparative study of coral sand and silica sand in creep under general stress states[J]. Canadian Geotechnical Journal, 2017, 54(11):1601-1611. http://cn.bing.com/academic/profile?id=e9b72520dd7b4ac49c4259b6d6e37f9d&encoded=0&v=paper_preview&mkt=zh-cn [19] 徐学勇, 汪稔, 王新志, 等.饱和钙质砂爆炸响应动力特性试验研究[J].岩土力学, 2012, 33(10):2953-2959. http://d.old.wanfangdata.com.cn/Periodical/ytlx201210012XU Xueyong, WANG Ren, WANG Xinzhi, et al. Experimental study of dynamic behavior of saturated calcareous sand due to explosion[J]. Rock and Soil Mechanics, 2012, 33(10):2953-2959. http://d.old.wanfangdata.com.cn/Periodical/ytlx201210012 [20] XIAO Y, LIU H, XIAO P, et al. Fractal crushing of carbonate sands under impact loading[J]. Géotechnique Letter, 2016, 6(3):1-6. https://www.researchgate.net/publication/305877257_Fractal_crushing_of_carbonate_sands_under_impact_loading [21] 赵凯, 王肖钧, 刘飞, 等.多孔材料中应力波的传播[J].爆炸与冲击, 2011, 31(1):107-112. http://www.bzycj.cn/CN/abstract/abstract8641.shtmlZHAO Kai, WANG Xiaojun, LIU Fei, et al. Propagation of stress wave in porous material[J]. Explosion and Shock Waves, 2011, 31(1):107-112. http://www.bzycj.cn/CN/abstract/abstract8641.shtml [22] DAVIES E D, HUNTER S C. The dynamic compression testing of solids by the method of the split Hokinson pressure bar[J]. Journal of the Mechanics and Physics of Solids, 1963, 11(3):155-179. https://www.sciencedirect.com/science/article/pii/0022509663900504 [23] LUO H, LU H, COOPER WL, et al. Effect of mass density on the compressive behavior of dry sand under confinement at high strain rates[J]. Experimental Mechanics, 2011, 51(9):1499-1510. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0224700699