成层式防护结构抗超高速侵彻的数值分析

刘峥 程怡豪 邱艳宇 邓国强 王明洋

刘峥, 程怡豪, 邱艳宇, 邓国强, 王明洋. 成层式防护结构抗超高速侵彻的数值分析[J]. 爆炸与冲击, 2018, 38(6): 1317-1324. doi: 10.11883/bzycj-2017-0181
引用本文: 刘峥, 程怡豪, 邱艳宇, 邓国强, 王明洋. 成层式防护结构抗超高速侵彻的数值分析[J]. 爆炸与冲击, 2018, 38(6): 1317-1324. doi: 10.11883/bzycj-2017-0181
LIU Zheng, CHENG Yihao, QIU Yanyu, DENG Guoqiang, WANG Mingyang. Numerical analysis on hypervelocity penetration into layered protective structure[J]. Explosion And Shock Waves, 2018, 38(6): 1317-1324. doi: 10.11883/bzycj-2017-0181
Citation: LIU Zheng, CHENG Yihao, QIU Yanyu, DENG Guoqiang, WANG Mingyang. Numerical analysis on hypervelocity penetration into layered protective structure[J]. Explosion And Shock Waves, 2018, 38(6): 1317-1324. doi: 10.11883/bzycj-2017-0181

成层式防护结构抗超高速侵彻的数值分析

doi: 10.11883/bzycj-2017-0181
基金项目: 

国家自然科学基金青年基金项目 51409258

国家自然科学基金面上项目 11772355

教育部长江学者和创新团队发展计划项目 IRT13071

详细信息
    作者简介:

    刘峥(1983-), 男, 博士研究生, 助理工程师

    通讯作者:

    邓国强, hnjia@sina.com

  • 中图分类号: O385

Numerical analysis on hypervelocity penetration into layered protective structure

  • 摘要: 采用SPH算法,基于AUTODYN-2D开展了钨杆弹对4种"花岗岩遮弹层-(空气)干砂分配层-混凝土结构层"形式的成层式防护结构的超高速打击数值计算分析,得到了结构的破坏特征和能量分配情况。结果表明:(1)增加打击速度会加剧遮弹层和分配层的破坏程度,但在一定速度区间内结构层的侵彻深度反而随着打击速度的增加而减小;(2)结构层的能量分配比例具有随着撞击速度增加而减小的趋势,这可以初步归结为竖向冲击动能在遮弹层和分配层的横向传递;(3)一定条件下,通过增加空气隔层可以减小结构层的侵彻深度、结构层分配能量的比例和绝对值。
  • 图  1  数值计算模型1A和1B

    Figure  1.  Numerical models as 1A and 1B

    图  2  结构的整体破坏现象

    Figure  2.  Structure's general damages

    图  3  混凝土层的侵彻深度变化

    Figure  3.  Penetration depth of concrete layers

    图  4  混凝土层的破坏现象

    Figure  4.  Damage phenomena of concrete layers

    图  5  能量分配的计算结果汇总

    Figure  5.  Energy distribution based on calculated results

    图  6  结构速度场分布云图(相邻粗实线间距2 000 mm)

    Figure  6.  Nephogram of structures' absolute velocity distribution (distance between adjacent bold lines=2 000 mm)

    表  1  数值模型几何参数

    Table  1.   Geometrical parameters of numerical models

    几何模型方案 长径比Lp/D 岩石遮弹层/m 空气隔层/m 砂分配层/m 混凝土结构层/m 总厚度/m
    1A 4 3.0 0 3 4 10.0
    1B 4 3.0 3 3 4 13.0
    2A 8 4.5 0 3 4 11.5
    2B 8 4.5 3 3 4 14.5
    下载: 导出CSV
  • [1] 杨秀敏, 邓国强.常规钻地武器破坏效应的研究现状和发展[J].后勤工程学院学报, 2016, 32(5):1-9. doi: 10.3969/j.issn.1672-7843.2016.05.001

    YANG Xiumin, DENG Guoqiang. The research status and development of damage effect of conventional earth penetration weapon[J]. Journal of Logistical Engineering University, 2016, 32(5):1-9. doi: 10.3969/j.issn.1672-7843.2016.05.001
    [2] ANTOUN T, GLENN L, WALTON O, et al. Simulation of hypervelocity penetration in limestone[J]. International Journal of Impact Engineering, 2005, 33(1):45-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ026064104
    [3] WÜNNEMANN K, COLLINS G S, MELOSH H J. A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets[J]. Icarus, 2006, 180(1):514-527. http://cn.bing.com/academic/profile?id=92571972d3fad48343e32d078d2453d4&encoded=0&v=paper_preview&mkt=zh-cn
    [4] 邓国强, 杨秀敏.超高速武器打击效应数值仿真[J].科技导报, 2015, 33(16):65-71. doi: 10.3981/j.issn.1000-7857.2015.16.010

    DENG Guoqiang, YANG Xiumin. Numerical simulation of damage effect of hypervelocity weapon on ground target[J]. Science & Technology Review, 2015, 33(16):65-71. doi: 10.3981/j.issn.1000-7857.2015.16.010
    [5] 邓国强, 杨秀敏.抗超高速武器最小安全防护层厚度计算[J].防护工程, 2016, 38(1):39-42.

    DENG Guoqiang, YANG Xiumin. Estimation method of safety protective layer depth resisting hypervelocity weapon impact[J]. Protective Engineering, 2016, 38(1):39-42.
    [6] 邓国强, 杨秀敏.超高速武器流体侵彻与装药浅埋爆炸效应的等效方法[J].防护工程, 2015, 37(6):27-32.

    DENG Guoqiang, YANG Xiumin. Effect equivalent method between fluid penetration of hypervelocity weapon and shallow detonation of explosive[J]. Protective Engineering, 2015, 37(6):27-32.
    [7] DAWSON A, BLESS S, LEVINSON S, et al. Hypervelocity penetration of concrete[J]. International Journal of Impact Engineering, 2008, 35(1):1484-1489. http://d.old.wanfangdata.com.cn/Conference/8403788
    [8] 牛雯霞, 黄洁, 柯发伟, 等.混凝土房屋结构靶的超高速撞击特性研究[J].实验流体力学, 2014, 28(2):79-84. http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201402014

    NIU Wenxia, HUANG Jie, KE Fawei, et al. Research on hypervelocity impact characteristics of concrete building structures target[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(2):79-84. http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201402014
    [9] 王鹏, 郭磊, 余道建, 等.动能棒超高速对混凝土靶板撞击毁伤效应研究[C]//第一届全国超高速碰撞会议论文集.四川绵阳, 2013: 145-150.
    [10] 钱秉文, 周刚, 李进, 等.钨合金弹体超高速撞击混凝土靶成坑特性研究[C]//第十一届全国爆炸力学学术会议论文集.广东珠海, 2016.
    [11] CHENG Y H, WANG M Y, SHI C C, et al. Constraining damage size and crater depth:a physical model of transient crater formation in rocky targets[J]International Journal of Impact Engineering, 2015, 81(6):50-60. http://cn.bing.com/academic/profile?id=1bae1775c83278135af9a3e2fecb4308&encoded=0&v=paper_preview&mkt=zh-cn
    [12] SHI C C, WANG M Y, ZHANG K L, et al. Semi-analytical model for rigid and erosive long rods penetration into sand with consideration of compressibility[J]. International Journal of Impact Engineering, 2015, 83(1):1-10. http://cn.bing.com/academic/profile?id=b36831e1af02d0a142193a8c558872ec&encoded=0&v=paper_preview&mkt=zh-cn
    [13] 李卧东, 王明洋, 施存程, 等.地质类材料超高速撞击相似关系与实验研究综述[J].防护工程, 2015, 37(2):55-62. http://d.old.wanfangdata.com.cn/Conference/8496798

    LI Wodong, WANG Mingyang, SHI Cuncheng, et al. Review of similaritylaws and scaling experiments research of hypervelocity impact ongeological material targets[J]. Protective Engineering, 2015, 37(2):55-62. http://d.old.wanfangdata.com.cn/Conference/8496798
    [14] 李争, 刘元雪, 胡明, 等."上帝之杖"天基动能武器毁伤效应评估[J].振动与冲击, 2016, 35(18):159-164. http://d.old.wanfangdata.com.cn/Periodical/zdycj201618026

    LI Zheng, LIU Yuanxue, HU Ming, et al. Research on damage effection of "Gold sticks" space-based kinetic energy weapons[J]. Journal of Vibration and Shock, 2016, 35(18):159-164. http://d.old.wanfangdata.com.cn/Periodical/zdycj201618026
    [15] 程怡豪.超高速弹体撞击混凝土和岩石毁伤机理研究[D].南京: 解放军理工大学, 2016.
    [16] AI H A, AHRENS T J. Simulation of dynamic response of granite:A numerical approach of shock-induced damage beneath impact craters[J]. International Journal of Impact Engineering, 2006, 33(1):1-10. http://cn.bing.com/academic/profile?id=5d5a9fd290cefcacee055df4abc81f37&encoded=0&v=paper_preview&mkt=zh-cn
    [17] 张庆明, 黄风雷.超高速碰撞动力学引论[M].北京:科学出版社, 2000:121-136.
    [18] STEINBERG D. Equation of state and strength properties of selected materials[M]. Livermore, CA:Lawrence Livermore National Laboratory, 1996.
    [19] LAINE L, SANDVIK A. Derivation of mechanical properties for sand[C]//Proceedings of the 4th Asia-Pacific Conference on Shock and Impact Loads on Structures. Singapore, 2001.
    [20] RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by RETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes[C]//Proceedings of the 9th International Symposium on the Effects of Munitions with Structures, 1999.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  5582
  • HTML全文浏览量:  1387
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-23
  • 修回日期:  2017-09-08
  • 刊出日期:  2018-11-25

目录

    /

    返回文章
    返回