模拟高原环境条件下C5-C6燃料的爆轰特性研究

尤祖明 祝逢春 王永旭 李斌 解立峰

尤祖明, 祝逢春, 王永旭, 李斌, 解立峰. 模拟高原环境条件下C5-C6燃料的爆轰特性研究[J]. 爆炸与冲击, 2018, 38(6): 1303-1309. doi: 10.11883/bzycj-2017-0185
引用本文: 尤祖明, 祝逢春, 王永旭, 李斌, 解立峰. 模拟高原环境条件下C5-C6燃料的爆轰特性研究[J]. 爆炸与冲击, 2018, 38(6): 1303-1309. doi: 10.11883/bzycj-2017-0185
YOU Zuming, ZHU Fengchun, WANG Yongxu, LI Bin, XIE Lifeng. Detonation characteristics of C5-C6 fuels under simulated plateau-condition[J]. Explosion And Shock Waves, 2018, 38(6): 1303-1309. doi: 10.11883/bzycj-2017-0185
Citation: YOU Zuming, ZHU Fengchun, WANG Yongxu, LI Bin, XIE Lifeng. Detonation characteristics of C5-C6 fuels under simulated plateau-condition[J]. Explosion And Shock Waves, 2018, 38(6): 1303-1309. doi: 10.11883/bzycj-2017-0185

模拟高原环境条件下C5-C6燃料的爆轰特性研究

doi: 10.11883/bzycj-2017-0185
详细信息
    作者简介:

    尤祖明(1985-), 男, 博士研究生

    通讯作者:

    李斌, libin@njust.edu.cn

  • 中图分类号: O381

Detonation characteristics of C5-C6 fuels under simulated plateau-condition

  • 摘要: 针对军事上使用的碳氢燃料C5-C6,借助自行设计的立式爆轰管装置,通过改变管体内初始环境温度和压力,研究当温度低于常温,压力小于一个大气压时此种碳氢燃料的爆轰性能,得到爆轰参数分别随初始温度和初始压力变化的规律,并将实验数据与常温常压条件下的数据相对比。结果表明:在常温条件下,环境初始温度对燃料爆轰参数的影响远小于初始压力的影响,当环境初始压力下降至常压的一半时,燃料的爆轰状态接近临界爆轰状态。研究成果可为云爆武器在高原条件下使用的性能预计提供实验数据补充和支持。
  • 图  1  不同海拔高度对应的环境压力和环境温度

    Figure  1.  Ambient pressure and temperature at different altitudes

    图  2  立式爆轰管结构图及实物图

    Figure  2.  Schematic diagram and picture of vertical detonation tube

    图  3  典型爆轰管内燃料爆轰压力-时间曲线

    Figure  3.  Typical pressure-time curves of fuels measured in the detonation tube

    图  4  不同初始温度条件下燃料爆轰参数随测试点距离变化情况

    Figure  4.  Relationships between detonation characteristics of fuels and measuring points at different initial temperatures

    图  5  不同初始温度条件下燃料爆轰参数变化趋势

    Figure  5.  Trends of detonation characteristics of fuels at different initial temperatures

    图  6  不同初始压力条件下燃料爆轰参数随测试点距离的变化

    Figure  6.  Relationships between detonation characteristics of fuels and measuring points at different initial pressures

    图  7  不同初始压力条件下燃料爆轰参数变化趋势

    Figure  7.  Trends of detonation characteristics of fuels at different initial pressures

    图  8  模拟高原环境条件下C5-C6燃料爆轰特性变化趋势

    Figure  8.  Trends of detonation characteristics for C5-C6 fuels in simulated altitude environment conditions

    表  1  传感器布置位置及量程参数

    Table  1.   Positions of pressure sensors and its parameter ranges

    传感器 1 2 3 4 5 6
    高度/m 1.4 1.9 2.4 2.9 3.4 3.9
    最大量程/MPa 6.864 6.875 6.884 6.857 6.901 6.921
    下载: 导出CSV
  • [1] 白春华, 梁慧敏, 李建平, 等.云雾爆轰[M].北京:科学出版社, 2012.
    [2] 蒋丽, 白春华, 刘庆明.气/固/液三相混合物燃烧转爆轰过程实验研究[J].爆炸与冲击, 2010, 30(6):588-592. http://www.bzycj.cn/CN/abstract/abstract8760.shtml

    JIANG Li, BAI Chunhua, LIU Qingming. Experimental study on DDT process in 3-phase suspensions of gas/solid particle/liquid mist mixture[J]. Explosion and Shock Waves, 2010, 30(6):588-592. http://www.bzycj.cn/CN/abstract/abstract8760.shtml
    [3] 陈嘉琛, 张奇, 马秋菊, 等.固体与液体混合燃料抛撒过程数值模拟[J].兵工学报, 2014, 35(7):972-976. doi: 10.3969/j.issn.1000-1093.2014.07.005

    CHEN Jiachen, ZHANG Qi, MA Qiuju, et al. Numerical simulation of dispersal process of solid-liquid mixed fuel[J]. Acta Armamentarii, 2014, 35(7):972-976. doi: 10.3969/j.issn.1000-1093.2014.07.005
    [4] 史远通, 张奇.爆炸驱动燃料抛散的非理想化特征[J].含能材料, 2015, 23(4):330-335. http://d.old.wanfangdata.com.cn/Periodical/hncl201504004

    SHI Yuantong, ZHANG Qi. Non-ideal characteristics of fuel dispersal driven by explosive[J]. Chinese Journal of Energetic Materials, 2015, 23(4):330-335. http://d.old.wanfangdata.com.cn/Periodical/hncl201504004
    [5] LIU Lijuan, ZHANG Qi, SHEN Shilei, et al. Evaluation of detonation characteristics of aluminum/JP-10/air mixtures at stoichiometric concentrations[J]. Fuel, 2016, 169:41-49. http://cn.bing.com/academic/profile?id=9b88e7506581b6a18650e69c2d85f398&encoded=0&v=paper_preview&mkt=zh-cn
    [6] 刘庆明, 白春华, 李建平.多相燃料空气炸药爆炸压力场研究[J].实验力学, 2008, 23(4):360-370. http://d.old.wanfangdata.com.cn/Periodical/sylx200804011

    LIU Qingming, BAI Chunhua, LI Jianping. Study on blast field characteristics of multiphase fuel air explosive[J]. Journal of Experimental Mechanics, 2008, 23(4):360-370. http://d.old.wanfangdata.com.cn/Periodical/sylx200804011
    [7] 郑权, 翁春生, 白桥栋.当量比对液体燃料旋转爆轰发动机爆轰影响实验研究[J].推进技术, 2015, 36(6):947-952. http://d.old.wanfangdata.com.cn/Periodical/tjjs201506020

    ZHENG Quan, WENG Chunsheng, BAI Qiaodong. Experimental study on effects of equivalence ratio on detonation characteristics of liquid-fueled rotating detonation engine[J]. Journal of Propulsion Technology, 2015, 36(6):947-952. http://d.old.wanfangdata.com.cn/Periodical/tjjs201506020
    [8] 徐晓峰.碳氢燃料爆轰特性的研究[D].南京: 南京理工大学, 2002. http://cdmd.cnki.com.cn/Article/CDMD-10288-2003105569.htm
    [9] 姚干兵.液态碳氢燃料云雾爆轰及其抑制与泄放研究[D].南京: 南京理工大学, 2006. http://cdmd.cnki.com.cn/Article/CDMD-10288-2006183708.htm
    [10] PILCH M, ERDMAN C A. Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop[J]. International Journal of Multiphase Flow, 1987, 13(6):741-757. doi: 10.1016-0301-9322(87)90063-2/
    [11] FAETH G M, HSIANG L P, WU P K. Structure and breakup properties of sprays[J]. International Journal of Multiphase Flow, 1995, 21:99-127. doi: 10.1016-0301-9322(95)00059-7/
    [12] HSIANG L P, FAETH G M. Drop properties after secondary breakup[J]. International Journal of Multiphase Flow, 1993, 19(5):721-735. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027271124/
    [13] JOHNSON D M, TOMLIN G B, WALKER D G. Detonations and vapor cloud explosions:why it matters[J]. Journal of Loss Prevention in the Process Industries, 2015, 36:358-364. doi: 10.1016/j.jlp.2015.03.017
    [14] JACKSON S I. The dependence of ammonium-nitrate fuel-oil (ANFO) detonation on confinement[J]. Proceedings of the Combustion Institute, 2017, 36(2):2791-2798. https://www.sciencedirect.com/science/article/pii/S1540748916305053
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  4665
  • HTML全文浏览量:  1524
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-27
  • 修回日期:  2017-10-17
  • 刊出日期:  2018-11-25

目录

    /

    返回文章
    返回