高速破片撞击充液容器拖拽阶段气腔特性研究

马丽英 李向东 周兰伟 张高峰

马丽英, 李向东, 周兰伟, 张高峰. 高速破片撞击充液容器拖拽阶段气腔特性研究[J]. 爆炸与冲击, 2018, 38(6): 1412-1418. doi: 10.11883/bzycj-2017-0188
引用本文: 马丽英, 李向东, 周兰伟, 张高峰. 高速破片撞击充液容器拖拽阶段气腔特性研究[J]. 爆炸与冲击, 2018, 38(6): 1412-1418. doi: 10.11883/bzycj-2017-0188
MA Liying, LI Xiangdong, ZHOU Lanwei, ZHANG Gaofeng. Characteristics of draging period cavity formation in liquid filling container by fragment impacting[J]. Explosion And Shock Waves, 2018, 38(6): 1412-1418. doi: 10.11883/bzycj-2017-0188
Citation: MA Liying, LI Xiangdong, ZHOU Lanwei, ZHANG Gaofeng. Characteristics of draging period cavity formation in liquid filling container by fragment impacting[J]. Explosion And Shock Waves, 2018, 38(6): 1412-1418. doi: 10.11883/bzycj-2017-0188

高速破片撞击充液容器拖拽阶段气腔特性研究

doi: 10.11883/bzycj-2017-0188
基金项目: 

国家自然科学基金面上项目 11572159

详细信息
    作者简介:

    马丽英(1990-), 女, 硕士

    通讯作者:

    李向东, lixiangd@njust.edu.cn

  • 中图分类号: O385

Characteristics of draging period cavity formation in liquid filling container by fragment impacting

  • 摘要: 为研究液压水锤效应拖拽阶段的气腔特性,利用数值模拟与实验相结合的方法对破片撞击充液容器的过程进行研究,并分析了破片撞击速度和液体介质对液压水锤效应拖拽阶段气腔的影响。结果表明:破片撞击充液容器时,在液体中形成的气腔形状为圆锥形,其最大直径和长度随破片的运动逐渐增大,气腔长径比最终趋于一稳定变化区域,约在3.8~3.9之间;气腔最大直径随着破片撞击速度的增大而增大;柴油介质中形成气腔的最大直径和长径比变化规律与水介质中形成的相同,气腔长径比最终在4.25左右浮动,柴油介质中形成气腔的最大直径和长径比均大于水介质中形成的。
  • 图  1  液压水锤效应形成过程

    Figure  1.  Hydrodynamic ram forming process

    图  2  气腔特性表征示意图

    Figure  2.  Sketch of cavity characteristics

    图  3  有限元模型

    Figure  3.  Finite element model

    图  4  实验装置及布置示意图

    Figure  4.  Experimental device and layout diagram

    图  5  充液容器(实验)

    Figure  5.  Liquid-filled container (experiment)

    图  6  气腔大小随时间变化的数值计算结果与实验照片(单位:cm)

    Figure  6.  Numerical and experimental results of cavity characteristics varies with time (unit: cm)

    图  7  气腔特性曲线

    Figure  7.  Cavity characteristic curve

    图  8  不同撞击速度下气腔特性曲线

    Figure  8.  Cavity characteristic curves with different impact velocities

    图  9  不同撞击速度下L/D随时间变化曲线

    Figure  9.  Cavity L/D-time curves with different impact velocities)

    图  10  不同介质中的气腔特性曲线(水和柴油)

    Figure  10.  Cavity characteristic curves in different liquid (water and diesel)

    图  11  气腔长度无量纲曲线(水和柴油)

    Figure  11.  Normalized curves of cavity length (water and diesel)

    图  12  不同介质中的L/D随时间变化曲线(水和柴油)

    Figure  12.  Cavity L/D-time curves in different liquids (water and diesel)

    表  1  箱体材料主要参数

    Table  1.   Main parameters of filling liquid container

    材料 ρ/(kg·m-3) E/GPa μ A/MPa B/MPa C n m Grüneisen状态方程
    c/(m·s-1) S1 γ
    铝合金 2 797 69.63 0.33 265 462 0.015 0.34 1.0 5 286 1.4 2.0
    下载: 导出CSV

    表  2  水和空气的主要材料参数表

    Table  2.   Material parameters of water and air

    材料 ρ/(kg·m-3) c/(m·s-1) S1 C4 C5
    1 000 1 480 1.979 - -
    空气 1.25 - - 0.4 0.4
    下载: 导出CSV
  • [1] MOUSSA N A, WHALE M D, GROZMANN D E, et al. Potential for fuel tank fire and hydrodynamic ram from uncontained aircraft engine debris[R]. Hughes Technical Center, US, 1997.
    [2] KWON Y W, YANG K, ADAMS C. Modeling and simulation of high-velocity projectile impact on storage tank[J]. Journal of Pressure Vessel Technology, 2016, 138(4):041303. doi: 10.1115/1.4032447
    [3] DISIMILE P J, DAVIS J, TOY N. Mitigation of shock waves within a liquid filled tank[J]. International Journal of Impact Engineering, 2011, 38(2):61-72. http://www.sciencedirect.com/science/article/pii/S0734743X10001521
    [4] SHEPARD T, ABRAHAM J, SCHWALBACH D, et al. Velocity and density effect on impact force during water entry of sphere[J]. Journal of Remote Sensing & GIS, 2014, 3(3):1000129.
    [5] TRUSCOTT T T, TECHET A H. A spin on cavity formation during water entry of hydrophobic and hydrophilic spheres[J]. Physics of Fluids, 2009, 21(12):121703. doi: 10.1063/1.3272264
    [6] LECYSYN N, BONY-DANDRIEUX A, APRIN L, et al. Experimental study of hydraulic ram effects on a liquid storage tank:analysis of overpressure and cavitation induced by a high-speed projectile[J]. Journal of Hazardous Materials, 2010, 178(1):635-643. http://www.ncbi.nlm.nih.gov/pubmed/20189299
    [7] LECYSYN N, DANDRIEUX A, HEYMES F, et al. Ballistic impact on an industrial tank:study and modeling of consequences[J]. Journal of Hazardous Materials, 2009, 172(2):587-594. http://www.sciencedirect.com/science/article/pii/S0304389409011509
    [8] ARISTOFF J M, TRUSCOTT T T, TECHET A H, et al. The water entry of decelerating spheres[J]. Physics of Fluids, 2010, 22(3):032102. doi: 10.1063/1.3309454
    [9] VARAS D, LÍPEZ-PUENTE J, ZAERA R. Experimental analysis of fluid-filled aluminium tubes subjected to high-velocity impact[J]. International Journal of Impact Engineering, 2009, 36(1):81-91. doi: 10.1016/j.ijimpeng.2008.04.006
    [10] VARAS D, LOPEZ-PUENTE J, ZAERA R. Numerical analysis of the hydrodynamic ram phenomenon in aircraft fuel tanks[J]. AIAA Journal, 2012, 50(7):1621-1630. doi: 10.2514/1.J051613
    [11] 蒋运华, 徐胜利, 周杰.运动体小扰动下入水空泡试验研究[J].弹道学报, 2016, 28(1):81-86. doi: 10.3969/j.issn.1004-499X.2016.01.015

    JIANG Yunhua, XU Shengli, ZHOU Jie. Experimental study on water entry cavity for vehicle with small perturbation[J]. Journal of Ballistics, 2016, 28(1):81-86. doi: 10.3969/j.issn.1004-499X.2016.01.015
    [12] 张伟, 郭子涛, 肖新科, 等.弹体高速入水特性实验研究[J].爆炸与冲击, 2011, 31(6):579-584. http://www.bzycj.cn/CN/abstract/abstract8740.shtml

    ZHANG Wei, GUO Zitao, XIAO Xinke, et al. Experiment investigation on behaviors of projectile high-speed water entry[J]. Explosion and Shock Waves, 2011, 31(6):579-584. http://www.bzycj.cn/CN/abstract/abstract8740.shtml
    [13] 郭子涛.弹体入水特性及不同介质中金属靶的抗侵彻性能研究[D].哈尔滨: 哈尔滨工业大学, 2012. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D241209
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  4683
  • HTML全文浏览量:  1247
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-31
  • 修回日期:  2017-09-21
  • 刊出日期:  2018-11-25

目录

    /

    返回文章
    返回