Characteristics of draging period cavity formation in liquid filling container by fragment impacting
-
摘要: 为研究液压水锤效应拖拽阶段的气腔特性,利用数值模拟与实验相结合的方法对破片撞击充液容器的过程进行研究,并分析了破片撞击速度和液体介质对液压水锤效应拖拽阶段气腔的影响。结果表明:破片撞击充液容器时,在液体中形成的气腔形状为圆锥形,其最大直径和长度随破片的运动逐渐增大,气腔长径比最终趋于一稳定变化区域,约在3.8~3.9之间;气腔最大直径随着破片撞击速度的增大而增大;柴油介质中形成气腔的最大直径和长径比变化规律与水介质中形成的相同,气腔长径比最终在4.25左右浮动,柴油介质中形成气腔的最大直径和长径比均大于水介质中形成的。Abstract: To study the characteristics of the cavities formed by the fragment impacting liquid filling container, the forming process of the cavities in the liquid-filled containers was studied through numerical and experimental studies. In addition, the effects of the impacting velocity and the liquid medium of the cavity were analyzed. The results show that the cavity formed in the liquid is approximate a cone, the maximum diameter, length and length-diameter ratio of the cavity increase with fragment moving. The ratio of length to diameter eventually approches a certain value, and the value is approximate 3.9. The maximum diameter of the cavity increases with the increase of the fragment impact velocity. The maximum diameter and the length-diameter ratio of the cavity in the diesel medium are similar to those in the water medium, and the length-diameter ratio of the cavity approches 4.25.The maximum diameter and the length-diameter ratio in the diesel medium are larger than those in the water medium.
-
Key words:
- liquid-filled container /
- cavity characteristics /
- impact velocity /
- liquid medium
-
表 1 箱体材料主要参数
Table 1. Main parameters of filling liquid container
材料 ρ/(kg·m-3) E/GPa μ A/MPa B/MPa C n m Grüneisen状态方程 c/(m·s-1) S1 γ 铝合金 2 797 69.63 0.33 265 462 0.015 0.34 1.0 5 286 1.4 2.0 表 2 水和空气的主要材料参数表
Table 2. Material parameters of water and air
材料 ρ/(kg·m-3) c/(m·s-1) S1 C4 C5 水 1 000 1 480 1.979 - - 空气 1.25 - - 0.4 0.4 -
[1] MOUSSA N A, WHALE M D, GROZMANN D E, et al. Potential for fuel tank fire and hydrodynamic ram from uncontained aircraft engine debris[R]. Hughes Technical Center, US, 1997. [2] KWON Y W, YANG K, ADAMS C. Modeling and simulation of high-velocity projectile impact on storage tank[J]. Journal of Pressure Vessel Technology, 2016, 138(4):041303. doi: 10.1115/1.4032447 [3] DISIMILE P J, DAVIS J, TOY N. Mitigation of shock waves within a liquid filled tank[J]. International Journal of Impact Engineering, 2011, 38(2):61-72. http://www.sciencedirect.com/science/article/pii/S0734743X10001521 [4] SHEPARD T, ABRAHAM J, SCHWALBACH D, et al. Velocity and density effect on impact force during water entry of sphere[J]. Journal of Remote Sensing & GIS, 2014, 3(3):1000129. [5] TRUSCOTT T T, TECHET A H. A spin on cavity formation during water entry of hydrophobic and hydrophilic spheres[J]. Physics of Fluids, 2009, 21(12):121703. doi: 10.1063/1.3272264 [6] LECYSYN N, BONY-DANDRIEUX A, APRIN L, et al. Experimental study of hydraulic ram effects on a liquid storage tank:analysis of overpressure and cavitation induced by a high-speed projectile[J]. Journal of Hazardous Materials, 2010, 178(1):635-643. http://www.ncbi.nlm.nih.gov/pubmed/20189299 [7] LECYSYN N, DANDRIEUX A, HEYMES F, et al. Ballistic impact on an industrial tank:study and modeling of consequences[J]. Journal of Hazardous Materials, 2009, 172(2):587-594. http://www.sciencedirect.com/science/article/pii/S0304389409011509 [8] ARISTOFF J M, TRUSCOTT T T, TECHET A H, et al. The water entry of decelerating spheres[J]. Physics of Fluids, 2010, 22(3):032102. doi: 10.1063/1.3309454 [9] VARAS D, LÍPEZ-PUENTE J, ZAERA R. Experimental analysis of fluid-filled aluminium tubes subjected to high-velocity impact[J]. International Journal of Impact Engineering, 2009, 36(1):81-91. doi: 10.1016/j.ijimpeng.2008.04.006 [10] VARAS D, LOPEZ-PUENTE J, ZAERA R. Numerical analysis of the hydrodynamic ram phenomenon in aircraft fuel tanks[J]. AIAA Journal, 2012, 50(7):1621-1630. doi: 10.2514/1.J051613 [11] 蒋运华, 徐胜利, 周杰.运动体小扰动下入水空泡试验研究[J].弹道学报, 2016, 28(1):81-86. doi: 10.3969/j.issn.1004-499X.2016.01.015JIANG Yunhua, XU Shengli, ZHOU Jie. Experimental study on water entry cavity for vehicle with small perturbation[J]. Journal of Ballistics, 2016, 28(1):81-86. doi: 10.3969/j.issn.1004-499X.2016.01.015 [12] 张伟, 郭子涛, 肖新科, 等.弹体高速入水特性实验研究[J].爆炸与冲击, 2011, 31(6):579-584. http://www.bzycj.cn/CN/abstract/abstract8740.shtmlZHANG Wei, GUO Zitao, XIAO Xinke, et al. Experiment investigation on behaviors of projectile high-speed water entry[J]. Explosion and Shock Waves, 2011, 31(6):579-584. http://www.bzycj.cn/CN/abstract/abstract8740.shtml [13] 郭子涛.弹体入水特性及不同介质中金属靶的抗侵彻性能研究[D].哈尔滨: 哈尔滨工业大学, 2012. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D241209